• Title/Summary/Keyword: meteorological service

Search Result 256, Processing Time 0.022 seconds

Study on Mobile Meteorological Information Services for Urban Area

  • Choi, Jin-Oh
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.64-68
    • /
    • 2011
  • On the limited urban area, precise measurement of meteorological data is not easy for the cost problem. The facilities collecting the data require high installment costs. The mobile sources can be a solution in city region. For example, a public bus on which some meteorological sensors are installed can act as moving information gathering station. The information is gathered on a server and aggregated to generate useful information for smart phone application. To implement the services, several obstacles are exists. This paper studies on a design of this mobile meteorological information service system for urban area.

Sensor Network Application : Meteorological Map Service Using Mobile Phone Sensor (센스 네트워크 응용 : 휴대폰 센스를 이용한 기상 지도 서비스)

  • Choi, Jin-oh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.203-206
    • /
    • 2009
  • Because the meteorological observation towers are scattered over large area, the collected meteorological data are very sparse. Therefore, the need for data collection on the limited urban areas like a specific building or subway area brings about vest cost which is required to install the corresponding sensors on the areas. Recently, to overcome this problem, the sensor network technique comes to the fore. This paper studies an application to service the meteorological map using mobile phone sensors.

  • PDF

OVERVIEW OF COMS GROUND SYSTEM AT METEOROLOGICAL SATELLITE CENTER OF KMA

  • Lee, Hyun-Kyoung;Lee, Bong-Ju;Lee, Yong-Sang;Shim, Jae-Myun;Suh, Ae-Sook;Kim, Hong-Sic;Je, Chang-Eon
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.159-162
    • /
    • 2006
  • This paper describes the ground system for COMS (Communication, Ocean, and Meteorological Satellite), the first Korean multi-purposed geostationary satellite, at MSC (Meteorological Satellite Center) in Korea. The overview of COMS MI (Meteorological Imager) will be introduced as well. KMA would implement mission planning for COMS MI operation and receive, process, interpret, disseminate, and archive MI data operationally for domestic and foreign user groups. Major missions of COMS MI are mitigation of natural hazard such as typhoon, dust storm, and heavy rain, and short-term warning of severe weather to protect human health and commerce. Moreover, research of climate variability and long-term changes will be supported. In accordance with those missions, the concept and design of COMPASS (COMS operation and meteorological products application service system), the ground system for COMS MI in MSC, have been setting up since 2004. Currently, COMPASS design is being progressed and will have finished the end of 2006. The development of COMPASS has three phases: first phase is development of fundamental COMPASS components in 2007, second phase is to integrate and test all of the COMPASS components in 2008, and the last phase is to operate COMPASS after COMS In-Orbit Tests in 2009.

  • PDF

Development of Mongolian Numerical Weather Prediction System (MNWPS) Based on Cluster System (클러스터 기반의 몽골기상청 수치예보시스템 개발)

  • Lee, Yong Hee;Chang, Dong-Eon;Cho, Chun-Ho;Ahn, Kwang-Deuk;Chung, Hyo-Sang;Gomboluudev, P.
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.35-46
    • /
    • 2005
  • Today, the outreach of National Meteorological Service such as PC cluster based Numerical Weather Prediction (NWP) technique is vigorous in the world wide. In this regard, WMO (World Meteorological Organization) asked KMA (Korea Meteorological Administration) to formulate a regional project, which cover most of RA II members, using similar technical system with KMA's. In that sense, Meteorological Research Institute (METRI) in KMA developed Mongolian NWP System (MNWPS) based on PC cluster and transferred the technology to Weather Service Center in Mongolia. The hybrid parallel algorithm and channel bonding technique were adopted to cut cost and showed 41% faster performance than single MPI (Message Passing Interface) approach. The cluster technique of Beowulf type was also adopted for convenient management and saving resources. The Linux based free operating system provide very cost effective solution for operating multi-nodes. Additionally, the GNU software provide many tools, utilities and applications for construction and management of a cluster. A flash flood event happened in Mongolia (2 September 2003) was selected for test run, and MNWPS successfully simulated the event with initial and boundary condition from Global Data Assimilation and Prediction System (GDAPS) of KMA. Now, the cluster based NWP System in Mongolia has been operated for local prediction around the region and provided various auxiliary charts.

COMS Normal Operation for Earth Observation Mission

  • Cho, Young-Min
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.337-349
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service on $128.2^{\circ}$ East of the geostationary orbit since April 2011. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first one-year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

Design of Meteorological Map Service System Using Mobile Phone Sensor (휴대폰 센서를 이용한 기상정보 서비스 시스템의 설계)

  • Choi, Jin-oh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1077-1080
    • /
    • 2009
  • Dense meteorological data are hard to be collected on the limited urban areas because of vest cost which is required to install the corresponding sensors on the areas. Recently, to overcome this problem, the sensor network technique comes to the fore. This paper studies an application to service the meteorological map using mobile phone sensors. A design results for system implementation are introduced in this paper.

  • PDF

Introduction of COMS Meteorological Imager

  • Cho Young-Min;Myung Hwan-Chun;Kang Song-Doug;Youn Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.112-115
    • /
    • 2005
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service is planned to be launched onto Geostationary Earth Orbit in 2008. The meteorological payload of COMS is an imager which will monitor meteorological phenomenon around the Korean peninsular intensively and of Asian-side full Earth disk periodically. The meteorological imager (MI) of COMS has 5 spectral channels, I visible channel with the resolution of I km at nadir and 4 infrared channels with the resolution of 4 km at nadir. The characteristics of the COMS MI are introduced in the view points of user requirements, hardware characteristics, and operation features.

  • PDF

Evaluation of Health Information Service on the Internal and External Weather Agency Web sites (국내외 기상 관련 웹사이트의 건강정보서비스 평가분석)

  • Oh, Jin-A;Kim, Heon-Ae
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.101-109
    • /
    • 2010
  • The service of health information was provided through internal and external weather agency web sites. The purpose of this study was to analyze current status of the weather agency web sites dealing with health information in the internet, and to evaluate their contents and technical aspects. The evaluation tool consisted of five area (appropriateness, accessibility, supportiveness, feedback, and continuance) with nineteen items. For the public confidence, web sites were limited to national meteorological administration and representative weather agencies. The evaluating web sites were fourteen from eight countries. The evaluation scores of fourteen web sites were 37.8 out of 53.0 in total. Each subcategory score were 5-12 out of 12 in appropriate, 4-12 out of 12 in accessibility, 4-10 out of 11 in supportiveness, 2-8 out of 9 in feedback, and 2-8 out of 9 in continuance. The score of feedback was the lowest. Survey results indicated that Korean Meteorological Administration homepage was middle status compared with the others in side of depth of health information and feedback from expert. Climate change affect human health, so it will be possible to prevent some disease at first through climate information. It should be developed to provide high quality health information and system related climate on KMA homepage.

The Role of Weather and Climate Information as a Growth Engine for Passing the Gross Domestic Product per Head of $20,000 (국민소득 2만달러 달성의 성장엔진으로서 기상정보의 역할)

  • Kim, Yeong-Sin;Lee, Ki-Bong;Kim, Hoe-Cheol
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • High quality meteorological information is the typical product of service business industry which can offer the investment initiative by reducing the uncertainty and by activating other related industries. It requires a high level of meteorological technology and of ability to transform such technology as merchandising products. According to the analysis of the WMO data, the level of Korean meteorological technology is comparable to that of the nation with $17,500, GDP per head. However, the income of the meteorological business agent earns in Korea is 8 billion 4 hundred million won which is less than a tenth of that made by the US or Japan. The potential for such business field in Korea will be strong enough, if one can overcome such weak points. In addition, the efforts made by the government to advance the meteorological technology have been actualized gradually. Korean government will have a chance that is comparable to offering jobs for 20,000 unemployed by creating incomes of 40 billion won by meteorological technology as a sustained economic growth engine. It is proposed that government stimulate demand and supply by focusing on sales quantity than the price. The key points for creating the new demand are marketing and outsourcing of weather and climate information by maintaining the cooperative relationship between private and public sector.

Characteristics of the Mission Planning for COMS Normal Operation (천리안위성 정규 운영에 대한 임무계획 특성)

  • Cho, Young-Min;Jo, Hye-Young
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.163-172
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) has the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service. The COMS is located at $128.2^{\circ}$ East longitude on the geostationary orbit and currently under normal operation service since April 2011. For the sake of the executions of the meteorological and the ocean mission as well as the satellite control and management, the satellite mission planning is daily performed. The satellite mission plans are sent to the satellite by the real-time operation and the satellite executes the missions as per the mission plans. In this paper the mission planning for COMS normal operation is discussed in terms of the ground station configuration and the characteristics of daily, weekly, monthly, and seasonal mission planning activities. The successful mission planning is also confirmed with the first one-year normal operation results.