• Title/Summary/Keyword: meteorological index

Search Result 503, Processing Time 0.029 seconds

Estimation of Areal Evapotranspiration Using NDVI and Temperature Data (NDVI와 기온자료를 이용한 광역증발산량의 추정)

  • Shin, Sha-Chul;An, Tae-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.79-89
    • /
    • 2004
  • Remote sensing technique is a probable means to estimate distribution of actual evapotranspiration in connection with regional characteristics of vegetation and landuse. The factors controlling evapotranspiration from ground surface are air temperature, humidity, wind, radiation, soil moisture and so on. Not only the vegetation influences directly the evapotranspiration, but also these factors strongly influences the vegetation growth at the area. Therefore, it can be expected that evapotranspiration is highly correlated to vegetation condition. The normalized difference vegetation index (NDVI) showed excellent ability to get the vegetation information. The NDVI is obtained using NOAA/AVHRR have been studied as a tool for vegetation monitoring. In this paper, a simple method to estimate actual avapotranspiration is proposed based on vegetation and meteorological data.

  • PDF

Classification of Land Cover over the Korean Peninsula Using Polar Orbiting Meteorological Satellite Data (극궤도 기상위성 자료를 이용한 한반도의 지면피복 분류)

  • Suh, Myoung-Seok;Kwak, Chong-Heum;Kim, Hee-Soo;Kim, Maeng-Ki
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.138-146
    • /
    • 2001
  • The land cover over Korean peninsula was classified using a multi-temporal NOAA/AVHRR (Advanced Very High Resolution Radiometer) data. Four types of phenological data derived from the 10-day composited NDVI (Normalized Differences Vegetation Index), maximum and annual mean land surface temperature, and topographical data were used not only reducing the data volume but also increasing the accuracy of classification. Self organizing feature map (SOFM), a kind of neural network technique, was used for the clustering of satellite data. We used a decision tree for the classification of the clusters. When we compared the classification results with the time series of NDVI and some other available ground truth data, the urban, agricultural area, deciduous tree and evergreen tree were clearly classified.

  • PDF

Seasonal Variation in Carcass Characteristics of Korean Cattle Steers

  • Piao, M.Y.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.442-450
    • /
    • 2015
  • Climate temperature affects animal production. This study was conducted to evaluate whether climatic conditions affect beef carcass characteristics of Korean cattle steers. The monthly carcass characteristics of Korean cattle steers (n = 2,182,415) for 8 yr (2006 through 2013) were collected from the Korean Institute for Animal Products Quality Evaluation. Daily climate temperature (CT) and relative humidity (RH) data were collected from the Korean Meteorological Administration. Weather conditions in South Korea during summer were hot and humid, with a maximum temperature of $28.4^{\circ}C$ and a maximum RH of 91.4%. The temperature-humidity index (THI), calculated based on CT and RH, ranges from 73 to 80 during summer. Winter in South Korea was cold, with a minimum temperature of $-4.0^{\circ}C$ and a wind-chill temperature of $-6.2^{\circ}C$. Both marbling score (MS) and quality grade (QG) of Korean cattle steer carcasses were generally best (p<0.05) in autumn and worst in spring. A correlation analysis showed that MS and QG frequencies were not associated (p>0.05) with CT. Yield grade (YG) of Korean cattle steer carcasses was lowest (p<0.05) in winter (November to January) and highest in spring and summer (May to September). A correlation analysis revealed that YG frequency was strongly correlated ($r{\geq}0.71$; p<0.01) with CT and THI values. The rib eye area, a positive YG parameter, was not associated with CT. Backfat thickness (BT), a negative YG factor, was highest in winter (November and December). The BT was strongly negatively correlated ($r{\leq}-0.74$; p<0.01) with CTs. Therefore, the poor YG during winter is likely due in part to the high BT. In conclusion, YG in Korean cattle steer carcasses was worst in winter. QGs were not associated with winter or summer climatic conditions.

Thermal Environment Transition of Response Climate Change and Heat Wave Application Evaporative Cooling System (기후변화 및 폭염대응 증발냉각시스템 적용에 따른 내·외부 열환경 변화 연구)

  • Kim, Jeong-Ho;Kim, Hak-Gi;Yoon, Yong-Han;Kwon, Ki-Uk
    • Journal of Environmental Science International
    • /
    • v.25 no.9
    • /
    • pp.1269-1281
    • /
    • 2016
  • This study evaporative cooling system a heat wave climate change and reduction of the inside and outside thermal environment change research. Measurement items included micro meteorological phenomena and measured comfort indices. A micro meteorograph of temperature, relative humidity, surface temperature, and the comfort indices of WBGT, UTCI, and PMV were measured. The difference in inside and outside temperatures were compared for different land types, with the largest difference found in Type A ($4.81^{\circ}C$), followed by Type B ($4.40^{\circ}C$) and Type C ($3.12^{\circ}C$). Relative humidity was about 10.43% higher inside due to water injection by the evaporative cooling system. Surface temperature was inside about $6.60^{\circ}C$ higher than the outside all types. WBGT were Type A ($3.50^{\circ}C$) > Type B ($2.71^{\circ}C$) > Type C ($1.88^{\circ}C$). UTCI was low heat stress inside than outside all types. PMV was analysed Type C for inside predicted percentage of dissatisfied 75%, other types was percentage of dissatisfied 100% by inside and outside. Correlation analysis between land cover type and temperature, surface temperature, pmv, utci. T-test analysed inside and outside temperature difference was significant in all types of land.

Comparison of Thermal Environment and Biotope Area Rate according to Land Cover Types of Outside Space of School located in Chung-ju (충주시 학교외부공간 피복유형에 따른 온열환경 및 생태면적률 비교)

  • Ju, Jin-Hee;Ban, Jong-Heu;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1103-1108
    • /
    • 2010
  • This study was conducted to be used as basic data of environmental friendly construction planning by comparing and analyzing thermal environment, find particles and biotope area rate according to land cover types of outside space of schools located in Chung-ju. When meteorological factors were analyzed according to land cover types, for temperature planting area and paved area showed low-and high-temperature ranges, respectively, and relative humidity was negatively related with temperature as low-and high-temperature ranges corresponded to high-and low-humidity ranges, respectively. For Wet Bulb Globe Temperature Index (WBGT) by land cover types, it was observed to be artificial grass> bare land> natural grass. Find particles were different according to land cover types of playground with being bare land> artificial grass> natural grass in the order. Bare land playground, where there were artificial factors and no absorption of fine particles through stomata of leaves as a function of natural circulation, recorded the highest level of $39.8\;{\mu}g/m^3$ and the level was relatively higher compared to the levels by season in Chung-ju. Biotope area rate showed the order of M elementary school> K elementary school> C commercial high school. That was considered to be caused by the difference of land cover type of school playground accounting for a large part of a school.

Classification of Land Cover over the Korean Peninsula using MODIS Data (MODIS 자료를 이용한 한반도 지면피복 분류)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.169-182
    • /
    • 2009
  • To improve the performance of climate and numerical models, concerns on the land-atmosphere schemes are steadily increased in recent years. For the realistic calculation of land-atmosphere interaction, a land surface information of high quality is strongly required. In this study, a new land cover map over the Korean peninsula was developed using MODIS (MODerate resolution Imaging Spectroradiometer) data. The seven phenological data set (maximum, minimum, amplitude, average, growing period, growing and shedding rate) derived from 15-day normalized difference vegetation index (NDVI) were used as a basic input data. The ISOData (Iterative Self-Organizing Data Analysis), a kind of unsupervised non-hierarchical clustering method, was applied to the seven phenological data set. After the clustering, assignment of land cover type to the each cluster was performed according to the phenological characteristics of each land cover defined by USGS (US. Geological Survey). Most of the Korean peninsula are occupied by deciduous broadleaf forest (46.5%), mixed forest (15.6%), and dryland crop (13%). Whereas, the dominant land cover types are very diverse in South-Korea: evergreen needleleaf forest (29.9%), mixed forest (26.6%), deciduous broadleaf forest (16.2%), irrigated crop (12.6%), and dryland crop (10.7%). The 38 in-situ observation data-base over South-Korea, Environment Geographic Information System and Google-earth are used in the validation of the new land cover map. In general, the new land cover map over the Korean peninsula seems to be better classified compared to the USGS land cover map, especially for the Savanna in the USGS land cover map.

A Study on Climate Change KML Contents Publishing by using Meteorological Model (수치모델을 이용한 기후변화 KML 콘텐츠 출판 연구)

  • An, Seung-Man;Choi, Yeong-Jin;Eum, Jung-Hee;Jeon, Sang-Hee;Sung, Hyo-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.35-45
    • /
    • 2011
  • The purpose of this study is visualizing climate change contents from Weather Research and Forecasting model and providing useful tool to anyone who want to use them for communication and actual movement. As a results, we have built a process and user interface for publishing Arrow KML, BWS KML, and DI KML. Arrow KML provide wind rose service and wind attribute information for each arrow. BWS KML provide a wind power index and DI KML provide a thermal comfort. All KML contents are more reliable because those are visualized from the scientifically verified climate change prediction model. Further study will focus on searching for climate change contents mining and useful contents design for wide range of climate change mitigation/adaptation activity.

Characteristics and Comparison of 2016 and 2018 Heat Wave in Korea (2016년과 2018년 한반도 폭염의 특징 비교와 분석)

  • Lee, Hee-Dong;Min, Ki-Hong;Bae, Jeong-Ho;Cha, Dong-Hyun
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • This study analyzed and compared development mechanisms leading to heat waves of 2016 and 2018 in Korea. The European Centre for Medium-Range Weather Forecasts Reanalysis Interim (ERA Interim) dataset and Automated Surface Observing System data are used for synoptic scale analysis. The synoptic conditions are investigated using geopotential height, temperature, equivalent potential temperature, thickness, potential vorticity, omega, outgoing longwave radiation, and blocking index, etc. Heat waves in South Korea occur in relation to Western North Pacific Subtropical High (WNPSH) pressure system which moves northwestward to East Asia during summer season. Especially in 2018, WNPSH intensified due to strong large-scale circulation associated with convective activities in the Philippine Sea, and moved farther north to Korea when compared to 2016. In addition, the Tibetan high near the tropopause settled over Northern China on top of WNPSH creating a very strong anticyclonic structure in the upper-level over the Korean Peninsula. Unlike 2018, WNPSH was weaker and centered over the East China Sea in 2016. Analysis of blocking indices show wide blocking phenomena over the North Pacific and the Eurasian continent during heat wave event in both years. The strong upper-level ridge which was positioned zonally near 60°N, made the WNPSH over the South Korea stagnant in both years. Analysis of heat wave intensity (HWI) and duration (HWD) show that HWI and HWD in 2018 was both strong leading to extreme high temperatures. In 2016 however, HWI was relatively weak compared to HWD. The longevity of HWD is attributed to atmosphere blocking in the surrounding Eurasian continent.

Calculations of Optical Properties of Cloud Particles to Improve the Accuracy of Forward Scattering Probes for In-Situ Aircraft Cloud Measurements (항공기 구름 관측에 사용되는 전방산란 관측 기기의 정확도 향상을 위한 구름입자의 광학적 특성 계산)

  • Um, Junshik
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.75-89
    • /
    • 2020
  • Current in-situ airborne probes that measure the sizes of ice crystals smaller than 50 ㎛ are based on the concept that the measured intensity of light scattered by a particle in the forward and/or backward direction can be converted to particle size. The relationship between particle size and scattered light used in forward scattering probes is based on Mie theory, which assumes the refractive index of particle is known and all particles are spherical. Not only are small crystals not spherical, but also there are a wide variety of non-spherical shapes. Although it is well known that the scattering properties of non-spherical ice crystals differ from those of spherical shapes, the impacts of non-sphericity on derived in-situ particle size distributions are unknown. Thus, precise relationships between the intensity of scattered light and particle size and shape are required, as based on accurate calculations of scattering properties of ice crystals. In this study, single-scattering properties of ice crystals smaller than 50 ㎛ are calculated at a wavelength of 0.55 ㎛ using a numerically exact method (i.e., discrete dipole approximation). For these calculations, hexagonal ice crystals with varying aspect ratios are used to represent the shapes of natural small ice crystals to determine the errors caused by non-spherical ice crystals measured by forward scattering probes. It is shown that the calculated errors in sizing nonspherical ice crystals are at least 13% and 26% in forward (4~12°) and backward (168~176°) directions, respectively, and maximum errors are up to 120% and 132%.

STATUS OF GOCI DATA PROCESSING SYSTEM(GDPS) DEVELOPMENT

  • Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.159-161
    • /
    • 2007
  • Geostationary Ocean Color Imager (GOCI), the world-first ocean remote sensing instrument on geostationary Communication, Ocean, Meteorological Satellite (COMS), will be able to take a picture of a large region several times a day (almost with every one hour interval). We, KORDI, are in charge for developing the GOCI data processing system (GDPS) which is the basic software for processing the data from GOCI. The GDPS will be based on windows operating system to produce the GOCI level 2 data products (useful for oceanographic environmental analysis) automatically in real-time mode. Also, the GDPS will be a user-interactive program by well-organized graphical user interfaces for data processing and visualization. Its products will be the chlorophyll concentration, amount of total suspended sediments (TSS), colored dissolved organic matters (CDOM) and red tide from water leaving radiance or remote sensing reflectance. In addition, the GDPS will be able to produce daily products such as water current vector, primary productivity, water quality categorization, vegetation index, using individual observation data composed from several subscenes provided by GOCI for each slit within the target area. The resulting GOCI level 2 data will be disseminated through LRIT using satellite dissemination system and through online request and download systems. This software is carefully designed and implemented, and will be tested by sub-contractual company until the end of this year. It will need to be updated in effect with respect to new/improved algorithms and the calibration/validation activities.

  • PDF