• Title/Summary/Keyword: meteorological elements

Search Result 202, Processing Time 0.02 seconds

A Prediction Model for Forecast of the Onset Date of Changmas (장마 시작일 예측 모델)

  • Lee, Hyoun-Young;Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.112-122
    • /
    • 1993
  • Since more than 50${\%}$ of annual precipitation in Korea falls during Changma, the rainy season of early summer, and Late Changma, the rainy season of late summer, forcasting the onset days Changmas, and the amount related rainfalls would be necessary not only for agriculture but also for flood-control. In this study the authors attempted to build a prediction model for the forecast of the onset date of Changmas. The onset data of each Changma was derived out of daily rainfall data of 47 stations for 30 years(1961~1990) and weather maps over East Asia. Each station represent any of the 47 districts of local forecast under the Korea Meteorological Administration. The average onset dates of Changma during the period was from 21 through 26 June. The dates show a tendency to be delayed in El Ni${\~{n}}o years while they come earlier than the average in La Nina years. In 1982, the year of El Ni${\~{n}}o, the date was 9 Julu, two weeks late compared with the average. The relation of sea surface temperature(SST) over Pacific and Northern hemispheric 500mb height to the Changma onset dates was analyzed for the prediction model by polynomial regression. The onset date of Changma over Korea was correlated with SST in May(SST${_(5)}{^\circ}$C) of the district (8${^\circ}$~12${^\circ}S, 136${^\circ}~148${^\circ}W)of equatirial middle Pacific and the 500mb height in March (MB${_(3)}$"\;"m)over the district of the notrhern Hudson Bay. The relation between this two elements can be expressed by the regression: Onset=5.888SST${_5}"\;"+"\;"0.047MB${_(3)}$"\;"-251.241. This equation explains 77${\%}$ of variances at the 0.01${\%}$ singificance level. The onset dates of Late Changma come in accordance with the degeneration of the Subtro-pical High over northern Pacific. They were 18 August in average for the period showing positive correlation(r=0.71) with SST in May(SST)${_(i5)}{^\circ}$C) over district of IndiaN Ocean near west coast of Australia (24${^\circ}$~32${^\circ}$S, 104${^\circ}$~112${^\circ}$E), but negativ e with SST in May(SST${_(p5)}{^\circ}$ over district (12${^\circ}$~20${^\circ}$S,"\;"136${^\circ}$~148${^\circ}$W)of equatorial mid Pacific (r=-0.70) and with the 500mb height over district of northwestern Siberia (r=-0.62). The prediction model for Late Changma can be expressed by the regression: Onset=706.314-0.080 MB-3.972SST${_(p5)}+3.896 SST${_(i5)}, which explains 64${\%}$ of variances at the 0.01${\%}$ singificance level.

  • PDF

Groundwater Recharge Evaluation on Yangok-ri Area of Hongseong Using a Distributed Hydrologic Model (VELAS) (분포형 수문모형(VELAS)을 이용한 홍성 양곡리 일대 지하수 함양량 평가)

  • Ha, Kyoochul;Park, Changhui;Kim, Sunghyun;Shin, Esther;Lee, Eunhee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, one of the distributed hydrologic models, VELAS, was used to analyze the variation of hydrologic elements based on water balance analysis to evaluate the groundwater recharge in more detail than the annual time scale for the past and future. The study area is located in Yanggok-ri, Seobu-myeon, Hongseong-gun, Chungnam-do, which is very vulnerable to drought. To implement the VELAS model, spatial characteristic data such as digital elevation model (DEM), vegetation, and slope were established, and GIS data were constructed through spatial interpolation on the daily air temperature, precipitation, average wind speed, and relative humidity of the Korea Meteorological Stations. The results of the analysis showed that annual precipitation was 799.1-1750.8 mm, average 1210.7 mm, groundwater recharge of 28.8-492.9 mm, and average 196.9 mm over the past 18 years from 2001 to 2018 in the study area. Annual groundwater recharge rate compared to annual precipitation was from 3.6 to 28.2% with a very large variation and average 14.9%. By the climate change RCP 8.5 scenario, the annual precipitation from 2019 to 2100 was 572.8-1996.5 mm (average 1078.4 mm) and groundwater recharge of 26.7-432.5 mm (average precipitation 16.2%). The annual groundwater recharge rates in the future were projected from 2.8% to 45.1%, 18.2% on average. The components that make up the water balance were well correlated with precipitation, especially in the annual data rather than the daily data. However, the amount of evapotranspiration seems to be more affected by other climatic factors such as temperature. Groundwater recharge in more detailed time scale rather than annual scale is expected to provide basic data that can be used for groundwater development and management if precipitation are severely varied by time, such as droughts or floods.