• Title/Summary/Keyword: meteorological effects

Search Result 515, Processing Time 0.034 seconds

Temperature Modifies the Association between PM10 and Mortality in Seoul (서울시 미세먼지(PM10)로 인한 사망영향에 대한 기온의 수정효과)

  • Bae, Hyun-Joo;Lim, Yu-Ra;Yu, Seung Do;Kim, Joung Hwa;Cho, Yong-Sung
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.90-98
    • /
    • 2013
  • Objectives: Many studies have shown that air pollution and temperature have adverse effects on mortality and morbidity. But the interactive effect between air pollution and temperature on mortality has been rarely investigated. This study aims to explore whether temperature modifies the associations between ambient particulate matter less than $10{\mu}m$ in diameter ($PM_{10}$) and mortality in Seoul, Korea. Methods: The time-series analysis examined the effect of the interaction between $PM_{10}$ and temperature on mortality from 1999 to 2010 in Seoul. In order to examine the interactive effect between $PM_{10}$ and temperature on mortality, we fitted a response surface model controlling the time-trends and meteorological variables. The effects of $PM_{10}$ were stratified by temperature stratum to quantitatively estimate the $PM_{10}$-health outcome associations. Results: When temperature was low (below the threshold temperature), the percentage increases per $10{\mu}g/m^3$ increase of $PM_{10}$ increased 0.38% (95% Confidence Interval[CI]: 0.09~0.68%) and 0.31% (95% CI: - 0.07~0.68%) of mortality in the all age group and ${\geq}65$ year age group, respectively. When temperature was high (above the threshold temperature), the percentage increases per $10{\mu}g/m^3$ increase of $PM_{10}$ increased 1.09% (95% CI: 0.47~1.72%) and 1.35% (95% CI: 0.65~2.06%) for mortality in the all age group and ${\geq}65$ year age group, respectively. Conclusion: The results of this study showed strong modification by temperature in the association between $PM_{10}$ and mortality. We recommend that public health strategies to minimize adverse health impact of heat and $PM_{10}$ should be considered in control and prevention measures for air pollution and weather-related health impacts.

A Numerical Study on the Effects of Meteorological Conditions on Building Fires Using GIS and a CFD Model (GIS와 전산유체역학 모델을 이용한 기상 조건이 건물 화재에 미치는 영향 연구)

  • Mun, Da-Som;Kim, Min-Ji;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.395-408
    • /
    • 2021
  • In this study, we investigated the effects of wind speed and direction on building fires using GIS and a CFD model. We conducted numerical simulations for a fire event that occurred at an apartment in Ulsan on October 8, 2020. For realistic simulations, we used the profiles of wind speeds and directions and temperatures predicted by the local data assimilation and prediction system (LDAPS). First, using the realistic boundary conditions, we conducted two numerical simulations (a control run, CNTL, considered the building fire and the other assumed the same conditions as CNTL except for the building fire). Then, we conducted the additional four simulations with the same conditions as CNTL except for the inflow wind speeds and direction. When the ignition point was located on the windward of the building, strong updraft induced by the fire had a wide impact on the building roof and downwind region. The evacuation floor (15th floor) played a role to spread fire to the downwind wall of the building. The weaker the wind speed, the narrower fire spread around the ignition point, but the higher the flame above the building reaches. When the ignition point was located on the downwind wall of the building, the flame didn't spread to the upwind wall of the building. The results showed that wind speed and direction were important for the flow and temperature (or flame) distribution around a firing building.

Effects of heat stress on conception in Holstein and Jersey cattle and oocyte maturation in vitro

  • Jihwan Lee;Doosan Kim;Junkyu Son;Donghyeon Kim;Eunjeong Jeon;Dajinsol Jung;Manhye Han;Seungmin Ha;Seongsoo Hwang;Inchul Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.324-335
    • /
    • 2023
  • Korea, located in East Asia in the northern hemisphere, is experiencing severe climate changes. Specifically, the heat stress caused by global warming is negatively affecting the dairy sector, including milk production and reproductive performance, as the major dairy cattle Holstein-Friesian is particularly susceptible to heat stress. Here, we collected artificial insemination and pregnancy data of the Holstein and the Jersey cows from a dairy farm from 2014 to 2021 and analyzed the association between the conception rate and the temperature-humidity index, calculated using the data from the closest official weather station. As the temperature-humidity index threshold increased, the conception rate gradually decreased. However, this decrease was steeper in the Holstein breed than in the Jersey one at a temperature-humidity index threshold of 75. To evaluate the effects of heat stress on the oocyte quality, we examined the nuclear and cytoplasmic maturation of Holstein (n = 158, obtained from six animals) and Jersey oocytes (n = 123, obtained from six animals), obtained by ovum pick-up. There were no differences in the nuclear maturation between the different conditions (heat stress: 40.5℃, non- heat stress: 37.5℃) or breeds, although the Holstein oocytes seemed to have a lower metaphase II development (p = 0.0521) after in vitro maturation under heat stress conditions. However, we found that the Holstein metaphase II oocytes exposed to heat stress presented more reactive oxygen species and a peripheral distribution of the mitochondria, compared to those of the Jersey cattle. Here, we show that weather information from local meteorological stations can be used to calculate the temperature-humidity index threshold at which heat stress influences the conception rate, and that the Jersey cows are more tolerant to heat stress in terms of their conception rate at a temperature-humidity index over 75. The lower fertility of the Holstein cows is likely attributed to impaired cytoplasmic maturation induced by heat stress. Thus, the Jersey cows can be a good breed for the sustainability of dairy farms for addressing climate changes in South Korea, as they are more resistant to hyperthermia.

A Study on the Differences in Breeding Call of Cicadas in Urban and Forest Areas (도시와 산림지역 매미과 번식울음 차이 연구)

  • Kim, Yoon-Jae;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.698-708
    • /
    • 2018
  • The purpose of this study was to investigate differences in the breeding call characteristics of cicada species found in urban and forest areas in the central region of Korea by examining the interspecific effects and environmental factors affecting the breeding calls and breeding call patterns. The selected research sites were Gyungnam Apartment in Bangbae-dong, Seoul for the urban area and Chiak Mountain National Park in Wonju for the forest area. The research method for both sites was to record cicada breeding calls for 24 hours with a recorder installed at the site and analyze the results. Data from the Korea Meteorological Administration were used for environmental factors. The research period was from June 19, 2017 to September 30, 2017. As a result of the study, there were differences in the emergence of species between the two research sites: while Platypleura kaempferi, Hyalessa fuscata, Meimuna opalifera, Graptopsaltria nigrofuscata, and Suisha coreana were observed at both sites, Cryptotympana atrata was observed in the urban area and Leptosemia takanonis in the forest area only. The emergence periods of cicadas at the two sites were also different. The activities of P. kaempferi and L. takanonis were noticeable in the forest area. In the urban area, however, L. takanonis was not observed and the duration of activity of P. kaempferi was short. In the urban area, C. atrata appeared and sang for a long period; H. fuscata, M. opalifera, and G. nigrofuscata appeared earlier than in the forest area. S. coreana appeared earlier in the forest area than in the urban area. According to the daily call cycle analysis, even cospecific cicada showed a wide variation in their daily cycle depending on the region and the interspecific effects between different cicadas, and the environmental differences between the urban and forest areas affected the calls of cicadas. The results of correlation analysis between each cicada breeding calls and environmental factors of each site showed positive correlation with average temperature of most cicadas except P. kaempferi and C. atrata. The same species of each site showed positive correlations with more diverse weather factors such as solar irradiance. Logistic regression analysis showed that cicadas with overlapping calling times had significant effects on each other's breeding calls. C. atrata, which appeared only in the urban area, had a positive effect on the calling frequency of H. fuscata, M. opalifera, and G. nigrofuscata, which called in the same period. Additionally, L. takanonis, which appeared only in the forest area, and P. kaempferi had a positive effect on each other, and M. opalifera had a positive effect on the calling frequency of H. fuscata and G. nigrofuscata in the forest area. For the environmental factors, the calling frequency of cicadas was affected by the average temperatures of the urban and forest areas, and cicadas that appeared in the forest area were also affected by the amount of solar radiation. According to the results of statistical analysis, urban cicadas with similar activity periods are influenced by species, especially with respect to urban dominant species, C. atrata. Forest cicadas were influenced by species, mainly M. opalifera, which is a forest dominant species. The results of the meteorological impact analysis were similar to those of the correlation analysis, and were influenced mainly by the temperature, and the influence of the insolation was more increased in the forests.

Analysis of Thermal Environment Modification Effects of Street Trees Depending on Planting Types and Street Directions in Summertime Using ENVI-Met Simulation (ENVI-Met 시뮬레이션을 통한 도로 방향별 가로수 식재 형태에 따른 여름철 열환경 개선 효과 분석)

  • Lim, Hyeonwoo;Jo, Sangman;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.1-22
    • /
    • 2022
  • The modification effects of street trees on outdoor thermal comfort in summertime according to tree planting types and road direction were analyzed using a computer simulation program, ENVI-met. With trees, the air temperature and wind speed decreased, and the relative humidity increased. In the case of mean radiant temperature (Tmrt) and human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI), there was a decrease during the daytime. The greatest change among the meteorological factors by trees happened in Tmrt, and PET and UTCI showed similar patterns with Tmrt·The most effective tree planting type on thermal comfort modification was low tree height, wide tree crown, high leaf area index, and narrow planting interval (LWDN). Tmrt, PET and UTCI showed a large difference depending on shadow patterns of buildings and trees according to solar altitude and azimuth angles, and building locations. When the building shade areas increased, the thermal modification effect by trees decreased. In particular, results on the east and west sidewalks showed a large deviation over time. When applying the LWDN, the northwest, west and southwest sidewalks showed a significant reduction of 8.6-12.3℃ PET and 4.2-4.5℃ UTCI at 10:00, and the northeast, east and southeast sidewalks showed 8.1-11.8℃ PET and 4.4-5.0℃ UTCI at 16:00. On the other hand, when the least effective type (high tree height, narrow tree crown, low leaf area index, and wide planting interval) was applied, the maximum reduction was up to 1.8℃ PET and 0.9℃ UTCI on the eastern sidewalks, and up to 3.0℃ PET and 0.9℃ UTCI on the western ones. In addition, the difference in modification effects on Tmrt, PET and UTCI between the tree planting types was not significant when the tree effects were reduced by the effects of buildings. These results can be used as basic data to make the most appropriate street tree planting model for thermal comfort improvement in urban areas in summer.

Retrieval of Pollen Optical Depth in the Local Atmosphere by Lidar Observations (라이다를 이용한 지역 대기중 꽃가루의 광학적 두께 산출)

  • Noh, Young-Min;Lee, Han-Lim;Mueller, Detlef;Lee, Kwon-Ho;Choi, Young-Jean;Kim, Kyu-Rang;Choi, Tae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.11-19
    • /
    • 2012
  • Air-borne pollen, biogenically created aerosol particle, influences Earth's radiative balance, visibility impairment, and human health. The importance of pollens has resulted in numerous experimental studies aimed at characterizing their dispersion and transport, as well as health effects. There is, however, limited scientific information concerning the optical properties of airborne pollen particles contributing to total ambient aerosols. In this study, for the first time, optical characteristics of pollen such as aerosol backscattering coefficient, aerosol extinction coefficient, and depolarization ratio at 532 nm and their effect to the atmospheric aerosol were studied by lidar remotes sensing technique. Dual-Lidar observations were carried out at the Gwangju Institute of Science & Technology (GIST) located in Gwagnju, Korea ($35.15^{\circ}E$, $126.53^{\circ}N$) for a spring pollen event from 5 to 7 May 2009. The pollen concentration was measured at the rooftop of Gwangju Bohoon hospital where the building is located 1.0 km apart from lidar site by using Burkard trap sampler. During intensive observation period, high pollen concentration was detected as 1360, 2696, and $1952m^{-3}$ in 5, 6, and 7 May, and increased lidar return signal below 1.5km altitude. Pollen optical depth retrieved from depolarization ratio was 0.036, 0.021, and 0.019 in 5, 6, and 7 May, respectively. Pollen particles mainly detected in daytime resulting increased aerosol optical depth and decrease of Angstrom exponent.

Monitoring of Atmospheric Aerosol using GMS-5 Satellite Remote Sensing Data (GMS-5 인공위성 원격탐사 자료를 이용한 대기 에어러솔 모니터링)

  • Lee, Kwon Ho;Kim, Jeong Eun;Kim, Young Jun;Suh, Aesuk;Ahn, Myung Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.1-15
    • /
    • 2002
  • Atmospheric aerosols interact with sunlight and affect the global radiation balance that can cause climate change through direct and indirect radiative forcing. Because of the spatial and temporal uncertainty of aerosols in atmosphere, aerosol characteristics are not considered through GCMs (General Circulation Model). Therefor it is important physical and optical characteristics should be evaluated to assess climate change and radiative effect by atmospheric aerosols. In this study GMS-5 satellite data and surface measurement data were analyzed using a radiative transfer model for the Yellow Sand event of April 7~8, 2000 in order to investigate the atmospheric radiative effects of Yellow Sand aerosols, MODTRAN3 simulation results enable to inform the relation between satellite channel albedo and aerosol optical thickness(AOT). From this relation AOT was retreived from GMS-5 visible channel. The variance observations of satellite images enable remote sensing of the Yellow Sand particles. Back trajectory analysis was performed to track the air mass from the Gobi desert passing through Korean peninsular with high AOT value measured by ground based measurement. The comparison GMS-5 AOT to ground measured RSR aerosol optical depth(AOD) show that for Yellow Sand aerosols, the albedo measured over ocean surfaces can be used to obtain the aerosol optical thickness using appropriate aerosol model within an error of about 10%. In addition, LIDAR network measurements and backward trajectory model showed characteristics and appearance of Yellow Sand during Yellow Sand events. These data will be good supporting for monitoring of Yellow Sand aerosols.

  • PDF

Environmental Health Surveillance of Low Birth Weight in Seoul using Air Monitoring and Birth Data (2002년 서울시 대기오염과 출생 자료를 이용한 저체중아 환경보건감시체계 연구)

  • Seo, Ju-Hee;Kim, Ok-Jin;Kim, Byung-Mi;Park, Hye-Sook;Leem, Jong-Han;Hong, Yun-Chul;Kim, Young-Ju;Ha, Eun-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.40 no.5
    • /
    • pp.363-370
    • /
    • 2007
  • Objectives: The principal objective of this study was to determine the relationship between maternal exposure to air pollution and low birth weight and to propose a possible environmental health surveillance system for low birth weight. Methods: We acquired air monitoring data for Seoul from the Ministry of Environment, the meteorological data from the Korean Meteorological Administration, the exposure assessments from the National Institute of Environmental Research, and the birth data from the Korean National Statistical Office between January 1, 2002 and December 31, 2003. The final birth data were limited to singletons within $37{\sim}44$ weeks of gestational age. We defined the Low Birth Weight (LBW) group as infants with birth weights of less than 2500g and calculated the annual LBW rate by district. The air monitoring data were measured for $CO,\;SO_2,\;NO_2,\;and\;PM_{10}$ concentrations at 27 monitoring stations in Seoul. We utilized two models to evaluate the effects of air pollution on low birth weight: the first was the relationship between the annual concentration of air pollution and low birth weight (LBW) by individual and district, and the second involved a GIS exposure model constructed by Arc View 3.1. Results: LBW risk (by Gu, or district) was significantly increased to $1.113(95%\;CI=1.111{\sim}1.116)\;for\;CO,\;1.004(95%\;CI=1.003{\sim}1.005)\;for\;NO_2,\;1.202(95%\;CI=1.199{\sim}1.206\;for\;SO_2,\;and\;1.077(95%\;CI=1.075{\sim}1.078)\;\;for\;PM_{10}$ with each interquartile range change. Personal LBW risk was significantly increased to $1.081(95%\;CI=1.002{\sim}1.166)\;for\;CO,\;1.145(95%\;CI=1.036{\sim}1.267)\;for\;SO_2,\;and\;1.053(95%\;CI=1.002{\sim}1.108)\;for\;PM_{10}$ with each interquartile range change. Personal LBW risk was increased to $1.003(95%\;CI=0.954{\sim}1.055)\;for\;NO_2$, but this was not statistically significant. The air pollution concentrations predicted by GIS positively correlated with the numbers of low birth weights, particularly in highly polluted regions. Conclusions: Environmental health surveillance is a systemic, ongoing collection effort including the analysis of data correlated with environmentally-associated diseases and exposures. In addition. environmental health surveillance allows for a timely dissemination of information to those who require that information in order to take effective action. GIS modeling is crucially important for this purpose, and thus we attempted to develop a GIS-based environmental surveillance system for low birth weight.

Dynamics of Phosphorus-Turbid Water Outflow and Limno-Hydrological Effects on Hypolimnetic Effluents Discharging by Hydropower Electric Generation in a Large Dam Reservoir (Daecheong), Korea (대청호 발전방류수의 인·탁수 배출 역동성과 육수·수문학적 영향)

  • Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Daecheong Reservoir was made by the construction of a large dam (>15 m in height) on the middle to downstream of the Geum River and the discharge systems have the watergate-spillway (WS), a hydropower penstock (HPP), and two intake towers. The purpose of this study was to investigate the limnological anomalies of turbid water reduction, green algae phenomenon, and oligotrophic state in the lower part of reservoir dam site, and compared with hydro-meteorological factors. Field surveys were conducted in two stations of near dam and the outlet of HPP with one week intervals from January to December 2000. Rainfall was closely related to the fluctuations of inflow, outflow and water level. The rainfall pattern was depended on the storm of monsoon and typhoon, and the increase of discharge and turbidity responded more strongly to the intensity than the frequency. Water temperature and DO fluctuations within the reservoir water layer were influenced by meteorological and hydrological events, and these were mainly caused by water level fluctuation based on temperature stratification, density current and discharge types. The discharges of WS and HPP induced to the flow of water bodies and the outflows of turbid water and nutrients such as nitrogen and phosphorus, respectively. Especially, when hypoxic or low-oxygen condition was present in the bottom water, the discharge through HPP has contributed significantly to the outflow of phosphorus released from the sediment into the downstream of dam. In addition, HPP effluent which be continuously operated throughout the year, was the main factor that could change to a low trophic level in the downreservoir (lacustrine zone). And water-bloom (green-tide) occurring in the lower part of reservoir was the result that the water body of upreservoir being transported and diffused toward the downreseroir, when discharging through the WS. Finally, the hydropower effluent was included the importance and dynamics that could have a temporal and spatial impacts on the physical, chemical and biological factors of the reservoir ecosystem.

Characteristics of the Differences between Significant Wave Height at Ieodo Ocean Research Station and Satellite Altimeter-measured Data over a Decade (2004~2016) (이어도 해양과학기지 관측 파고와 인공위성 관측 유의파고 차이의 특성 연구 (2004~2016))

  • WOO, HYE-JIN;PARK, KYUNG-AE;BYUN, DO-SEONG;LEE, JOOYOUNG;LEE, EUNIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • In order to compare significant wave height (SWH) data from multi-satellites (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and SWH measurements from Ieodo Ocean Research Station (IORS), we constructed a 12 year matchup database between satellite and IORS measurements from December 2004 to May 2016. The satellite SWH showed a root mean square error (RMSE) of about 0.34 m and a positive bias of 0.17 m with respect to the IORS wave height. The satellite data and IORS wave height data did not show any specific seasonal variations or interannual variability, which confirmed the consistency of satellite data. The effect of the wind field on the difference of the SWH data between satellite and IORS was investigated. As a result, a similar result was observed in which a positive biases of about 0.17 m occurred on all satellites. In order to understand the effects of topography and the influence of the construction structures of IORS on the SWH differences, we investigated the directional dependency of differences of wave height, however, no statistically significant characteristics of the differences were revealed. As a result of analyzing the characteristics of the error as a function of the distance between the satellite and the IORS, the biases are almost constant about 0.14 m regardless of the distance. By contrast, the amplitude of the SWH differences, the maximum value minus the minimum value at a given distance range, was found to increase linearly as the distance was increased. On the other hand, as a result of the accuracy evaluation of the satellite SWH from the Donghae marine meteorological buoy of Korea Meteorological Administration, the satellite SWH presented a relatively small RMSE of about 0.27 m and no specific characteristics of bias such as the validation results at IORS. In this paper, we propose a conversion formula to correct the significant wave data of IORS with the satellite SWH data. In addition, this study emphasizes that the reliability of data should be prioritized to be extensively utilized and presents specific methods and strategies in order to upgrade the IORS as an international world-wide marine observation site.