• Title/Summary/Keyword: metaphase II

Search Result 167, Processing Time 0.029 seconds

Effect of Protein Supplementation, O2 Concentration and Co-Culture on the Development of Embryos Produced by Nuclear Transfer Using Cultured Cumulus Cells in Hanwoo (Korean Cattle)

  • Im, G.S.;Yang, B.S.;Park, S.J.;Im, S.K.;Yang, B.C.;Yi, Y.J.;Park, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1260-1266
    • /
    • 2001
  • The effect of protein supplementation, $O_2$ concentration and co-culture on the development of embryos produced by nuclear transfer using cultured cumulus cell was investigated. Recipient oocytes and cumulus cells were obtained from the ovaries of the slaughtered Hanwoo cows. Donor cumulus cells were cultured in Dulbecco's modified Eagle medium containing 10% fetal bovine serum at 5% $CO_2$ in air at $38.5^{\circ}C$. The 1 to 6 passages of cumulus cells were isolated and used as donor cells. The in vitro matured oocytes were enucleated and then the isolated donor cells were introduced. One $15{\mu}s$ pulse of 180 volts was applied to induce the fusion between karyoplast and cytoplast. The fused embryos were activated with $10{\mu}M$ calcium ionophore for 5 min and 2 mM 6-dimethylaminopurine for 3 h. To examine the effect of protein supplementation, nuclear transfer (NT) embryos were cultured in one of the following 4 treatments : 1) CR1aa + 3 mg/ml BSA for 7 days ; 2) CR1aa + 10% FBS for 7 days ; 3) CR1aa + 1.5 mg/ml BSA + 5% FBS for 7 days ; and 4) CR1aa + 3 mg/ml BSA for first 3 days and then CR1aa + 1.5 mg/ml BSA + 5% FBS for 4 days. Culture took place at 5% $CO_2$, 5% $O_2$ and 90% $N_2$ at $38.5^{\circ}C$. Although there were no significant differences in cleavage rate among different protein supplements, the rates of blastocyst formation were significantly different. When NT embryos were cultured in the medium supplemented with only BSA, they could develop to only morula not to blastocyst. However, when FBS was supplemented, NT embryos developed to blastocyst stage. In order to investigate the effect of $O_2$ concentration and co-culture, NT embryos were cultured in CR1aa + 1.5 mg/ml BSA + 5% FBS with or without cumulus cell co-culture at an atmosphere of 5% $CO_2$ in air (20% $O_2$) or 5% $CO_2$, 5% $O_2$, 90% $N_2$ (5% $O_2$) at $38.5^{\circ}C$ for 7 days. The percentage of blastocyst development was significantly higher when the NT embryos were cultured at an atmosphere of 5% $O_2$ than that of 20% $O_2$ (p<0.05). However, there was no significant difference between with and without cumulus cell co-culture at an atmosphere of 5% $O_2$ or 20% $O_2$. Fifty embryos were transferred to 25 recipients and 5 recipients were pregnant at 100 days. From 5 pregnant cows, only one cow was delivered of female twin. In conclusion, the embryos reconstructed by enucleation of metaphase II oocytes and introduction of the cycling and quiescent cumulus donor cells in Hanwoo had developmental potential to term after embryo transfer to recipient cows.

Survival Ability of Porcine Oocytes Frozen-Thawed by Open Pulled Straw Method (Open Pulled Straw 방법에 의해 동결-융해된 돼지난자의 생존능력)

  • 김세웅;박춘근;정희태;양부근;김정익
    • Journal of Embryo Transfer
    • /
    • v.16 no.2
    • /
    • pp.117-125
    • /
    • 2001
  • Vitrification of oocytes has been applied recently fur pigs, but remains elusive. The purpose of this study is to investigate the effects of vitrification in open pulled straws (OPS) on in vitro survival of porcine oocytes. When immature follicular oocytes frozen-thawed were cultured for in vitro maturation, maturation rates to metaphase-II stage were higher in oocytes with (25%) than without (15%) cumulus cells. After In vitro fertilization of oocytes frozen-thawed, the maturation rates were also significantly (P<0.05) higher in oocytes with (41%) that than without (17%) cumulus cells. However, the penetration rates were higher in oocytes without (19%) that than with (9%) cumulus. In another experiment, porcine oocytes matured in vitro were frozen and thawed for in vitro fertilization. The penetration rates were higher than in oocytes without (35%) that than with (26%) cumulus cells. However, the proportions of oocytes dead after in vitro fertilization were significantly (P<0.05) higher in oocytes with that than without cumulus cells. On the other hand, the rates of penetration and dead oocytes at 6 h after in vitro fertilization were not significant differences between oocytes with and without cumulus cells. However, the proportions of dead oocytes with (18%) and without (16%) cumulus cells were higher than in oocytes of control group (0%). These finding indicated the possible broader application for OPS, as they demonstrated that the maturation and fertilization in vitro by frozen-thawed oocytes may be accompained by cumulus cells and culture periods according to the requirements of the survival ability after freezing of mature and immature oocytes in pigs.

  • PDF

In Vitro Development and Survival Following Cryopreservation of Bovine Embryos according to Ovary Transport Temperature (난소 수송 온도에 따른 소 체외 수정란의 발육 및 동결-융해 후의 생존성)

  • Cho S.R.;Choi S.H.;Kim H.J.;Choe C.Y.;Jin H.J.;Son D.S.
    • Journal of Embryo Transfer
    • /
    • v.21 no.2
    • /
    • pp.163-168
    • /
    • 2006
  • The present study was carried out to investigate in vitro development and post-thawed survivability of bovine embryos according to different ovary transport temperatures. Bovine ovaries were collected at a local slaughterhouse and were transported at 4 different temperature categories to laboratory: $7{\sim}10^{\circ}C\;(T1),\;11{\sim}17^{\circ}C\;(T2),\;18{\sim}25^{\circ}C\;(T3)$ and above $26^{\circ}C$ (control group). The cumulus-oocyte-complexes aspirated from ovaries were in vitro matured, fertilized and cultured. The rates of maturation (to metaphase II), cleavage and development to blastocysts were compared among treatment groups. Furthermore, frozen-thawed blastocysts were in vitro cultured to compare the survivability among groups. The maturation rates in the T1, T2 and T3 groups ($60.0{\sim}68.2%$) were significantly lower than that in the control group (81.8%, p<0.05). The cleavage rates in the T1 and T2 groups (52.6 and 54.5%) were significantly lower than that in the control group (83.6%, p<0.05). However, there was no difference in the development rate to blastocysts among all groups ($27.9{\sim}33.0%$, p>0.05). The survivability of frozen-thawed embryos was significantly lower in the T1 group (46.2%) than those in the T2, T3 and control groups ($68.8{\sim}7.13%$, p<0.05). In conclusion, the results suggest that ovary transport temperature at $26^{\circ}C$ may be optimal for the better in vitro development and the survival of frozen-thawed embryos produced in vitro Furthermore, exposure of ovary to temperature below $10^{\circ}C$ during transport may significantly decrease both in vitro development and survivability of frozen-thawed blastocysts.

Species-specific Expression of Rpia Transcript in Cumulus-oocyte-complex (난자-난구세포 복합체에서 발현하는 Rpia 유전자의 종 특이적 발현)

  • Kim, Yun-Sun;Yoon, Se-Jin;Kim, Eun-Young;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.2
    • /
    • pp.95-106
    • /
    • 2007
  • Objective: We previously identified differentially expressed genes (DEGs) between germinal vesicle (GV) and metaphase II (MII) mouse oocyte. The present study was accomplished as a preliminary study to elucidate the role of ribose 5-phosphate isomerase A (Rpia), the essential enzyme of the pentose phosphate pathway (PPP), in oocyte maturation. We observed expression of Rpia in the mouse and porcine oocytes. Methods: Expression pattern of the 11 MII-selective DEGs in various tissues was evaluated using RT-PCR and selected 4 genes highly expressed in the ovary. According to the oocyte-selective expression profile, we selected Rpia as a target for this study. We identified the porcine Rpia sequence using EST clustering technique, since it is not yet registered in public databases. Results: The extended porcine Rpia nucleotide sequence was submitted and registered to GenBank (accession number EF213106). We prepared primers for porcine Rpia according to this sequence. In contrast to the oocyte-specific expression in the mouse, Rpia was expressed in porcine cumulus and granulosa cells as well as in oocytes. Conclusion: This is the first report on the characterization of the Rpia gene in the mouse and porcine ovarian cells. Results of the present study suggest that the mouse and porcine COCs employ different mechanism of glucose metabolism. Therefore, the different metabolic pathways during in vitro oocyte maturation (IVM) in different species may lead different maturation rates. It is required to study further regarding the role of Rpia in glucose metabolism of oocytes and follicular cell fore exploring the regulatory mechanism of oocyte maturation as well as for finding the finest culture conditions for in vitro maturation.

Caffeine treatment during in vitro maturation improves developmental competence of morphologically poor oocytes after somatic cell nuclear transfer in pigs (돼지 난자의 체외성숙에서 Caffeine 처리가 난자 성숙과 체세포 핵이식 배아의 체외발육에 미치는 영향)

  • Lee, Joohyeong;You, Jinyoung;Lee, Hanna;Shin, Hyeji;Lee, Geun-Shik;Lee, Seung Tae;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.131-138
    • /
    • 2017
  • In most mammals, metaphase II (MII) oocytes having high maturation promoting factor (MPF) activity have been considered as good oocytes and then used for assisted reproductive technologies including somatic cell nuclear transfer (SCNT). Caffeine increases MPF activity in mammalian oocytes by inhibiting p34cdc2 phosphorylation. The objective of this study was to investigate the effects of caffeine treatment during in vitro maturation (IVM) on oocyte maturation and embryonic development after SCNT in pigs. To this end, morphologically good (MGCOCs) and poor oocytes (MPCOCs) based on the thickness of cumulus cell layer were untreated or treated with 2.5 mM caffeine during 22-42, 34-42, or 38-42 h of IVM according to the experimental design. Caffeine treatment for 20 h during 22-42 h of IVM significantly inhibited nuclear maturation compared to no treatment. Blastocyst formation of SCNT embryos was not influenced by the caffeine treatment during 38-42 h of IVM in MGCOCs (41.1-42.1%) but was significantly improved in MPCOCs compared to no treatment (43.4 vs. 30.1%, P<0.05). No significant effects of caffeine treatment was observed in embryo cleavage (78.7-88.0%) and mean cell number in blastocyst (38.7-43.5 cells). The MPF activity of MII oocytes in terms of p34cdc2 kinase activity was not influenced by the caffeine treatment in MGCOCs (160.4 vs. 194.3 pg/ml) but significantly increased in MPCOCs (133.9 vs. 204.8 pg/ml). Our results demonstrate that caffeine treatment during 38-42 h of IVM improves developmental competence of SCNT embryos derived from MPCOCs by influencing cytoplasmic maturation including increased MPF activity in IVM oocytes in pigs.

In Vitro Fertilization of Pig Oocytes Matured In­Vitro by liquid Boar Spermatozoa (체외성숙 돼지 난포란의 액상정액을 이용한 체외수정)

  • 박창식;이영주
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.1
    • /
    • pp.17-23
    • /
    • 2002
  • The present study was carried out to investigate the effects of the maturation media such as a modified TCM-199 (mTCM-199) medium, modified Waymouth MB 752/1 (mWaymouth MB 752/1) medium or NCSU-23 medium on penetrability of pig oocytes by liquid boar sperm. Oocytes (30~40) were transferred into each well of a Nunc 4-well multidish containing 0.5 $m\ell$ maturation medium. When immature pig oocytes were cultured in mTCM-199, mWaymouth MB 752/1 and NCSU-23 maturation media for 44 h in 5% $CO_2$, in air at 38.5$^{\circ}C$, the germinal vesicle breakdown (CVBD) rates of the oocytes were 95.6, 94.1 and 94.9%, respectively, and the maturation rates (metaphase II) of oocytes were 92.5, 90.1 and 91.1%, respectively. No differences were observed among the maturation media. The spermrich portion of ejaculates with greater than 90% motile sperm were used in the experiment. The semen was cooled 22 to 24$^{\circ}C$ over 2 h period. The semen was diluted with Beltsville Thawing Solution (BTS) extender at room temperature to give 2$\times$10$^{8}$ sperm/$m\ell$ in 100 $m\ell$ plastic bottle. Liquid boar semen of 30 $m\ell$ in 100 $m\ell$ plastic bottle was kept at 17$^{\circ}C$ for 5 days. The sperm with greater than 70% motility after day 5 of storage were used for in-vitro fertilization (IVF). After 44 h maturation of immature oocytes, cumulus cells were removed and oocytes (30~40) coincubated far 6 h in 0.5 $m\ell$ mTCM-199 and mTBM fertilization media with 2$\times$1061$m\ell$ sperm concentration. At 6 h after IVF, oocytes were transferred into 0.5 $m\ell$ mTCM-199 and NCSU-23 culture media for further culture 6 or 42 h. Sperm penetration, polyspermy and male pronuclear formation of oocytes at 12 h after IVF, and developmental ability of oocytes at 48 h after IVF were evaluated. The oocytes in combination with NCSU-23 medium for maturation and mTBM medium for IVF increased male pronuclear formation (48.0%) compared to those in combination with mTCM-199 media for maturation and IVF, and mWaymouth MB 752il medium for maturation and mTCM-199 medium far IVF. The rates of cleaved embryos (2~4 cell stage) at 48 h after IVF were 24.1% in combination with mTCM-199 media for maturation, IVF and culture, 43.6% in combination with mWaymouth MB 75211 medium fur maturation and mTCM-199 media for IVF and culture, and 71.2% in combination with NCSU-23 medium for maturation, mTBM medium for IVF and NCSU-23 medium for culture. In conclusion, we found out the oocytes matured in vitro were fertilized by liquid boar sperm stored in BTS extender at 17$^{\circ}C$ for 5 days. We recommend the simple defined NCSU-23 medium for nuclear maturation, mTBM medium and liquid boar sperm for IVF, and NCSU-23 medium for embryo culture.

Effects of Recipient Oocytes and Electric Stimulation Condition on In Vitro Development of Cloned Embryos after Interspecies Nuclear Transfer with Caprine Somatic Cell (수핵난자와 전기적 융합조건이 산양의 이종간 복제수정란의 체외발달에 미치는 영향)

  • 이명열;박희성
    • Reproductive and Developmental Biology
    • /
    • v.28 no.1
    • /
    • pp.21-27
    • /
    • 2004
  • This study was conducted to investigate the developmental ability of caprine embryos after somatic cell interspecies nuclear transfer. Recipient bovine and porcine oocytes were obtained from slaughterhouse and were matured in vitro according to established protocols. Donor cells were obtained from an ear-skin biopsy of a caprine, digested with 0.25% trypsin-EDTA in PBS and primary fibroblast cultures were established in TCM-199 with 10% FBS. The matured oocytes were dipped in D-PBS plus 10% FBS + 7.5 $\mu$ g/ml cytochalasin B and 0.05M sucrose. Enucleation were accomplished by aspirating the first polar body and partial cytoplasm which containing metaphase II chromosomes using a micropipette with an out diameter of 20∼30 $\mu$m. A Single donor cell was individually transferred into the perivitelline space of each enucleated oocyte. The reconstructed oocytes were electric fusion with 0.3M mannitol fusion medium. After the electrofusion, embryos were activated by electric stimulation. Interspecies nuclear transfer embryos with bovine cytoplasts were cultured in TCM-199 medium supplemented with 10% FBS including bovine oviduct epithelial cells for 7∼9 day. And porcine cytoplasts were cultured in NCSU-23 medium supplemented with 10% FBS for 6 ∼8 day at $39^{\circ}C, 5% CO_2 $in air. Interspecies nuclear transfer by recipient bovine oocytes were fused with electric length 1.95 kv/cm and 2.10 kv/cm. There was no significant difference between two electric length in fusion rate(47.7 and 44.6%) and in cleavage rate(41.9 and 54.5%). Using electric length 1.95 kv/cm and 2.10 kv/cm in caprine-porcine NT oocytes, there was also no significant difference between two treatments in fusion rate(51.3 and 46.1%) and in cleavage rate(75.0 and 84.9%). The caprine-bovine NT oocytes fusion rate was lower(P<0.05) in 1 pulse for 60 $\mu$sec(19.3%), than those from 1 pulse for 30 $\mu$sec(50.8%) and 2 pulse for 30 $\mu$sec(31.0%). The cleavage rate was higher(P<0.05) in 1 pulse for 30 $\mu$sec(53.3%) and 2 pulse for 30 $\mu$sec(50.0%), than in 1 pulse for 60 $\mu$sec(18.2%). The caprine-porcine NT oocytes fusion rate was 48.1% in 1 pulse for 30 $\mu$sec, 45.2% in 2 pulse for 30 $\mu$sec and 48.6% in 1 pulse for 60 $\mu$sec. The cleavage rate was higher(P<0.05) in 1 pulse for 30 $\mu$sec(78.4%) and 1 pulse for 60 $\mu$sec(79.4%), than in 2 pulse for 30 $\mu$sec(53.6%). In caprine-bovine NT embryos, the developmental rate of morula and blastocyst stage embryos were 22.6% in interspecies nuclear transfer and 30.6% in parthenotes, which was no significant differed. The developmental rate of morula and blastocyst stage embryos with caprine-porcine NT embryos were lower(P<0.05) in interspecies nuclear transfer(5.1%) than parthenotes(37.4%).