• 제목/요약/키워드: metamaterials

검색결과 93건 처리시간 0.021초

Analysis of the THz Resonance Characteristics of H-shaped Metamaterials with Varying Width

  • Ryu, Han-Cheol
    • Current Optics and Photonics
    • /
    • 제5권1호
    • /
    • pp.66-71
    • /
    • 2021
  • The resonance characteristics of H-shaped metamaterials, whose widths were varied while keeping the height constant, were investigated in the terahertz (THz) frequency range. The H-shaped metamaterials were numerically analyzed in two modes in which the polarization of the incident THz electric field was either parallel or perpendicular to the width of the H-shaped structure. The resonant frequency of the metamaterial changed stably in each mode, even if only the width of the H shape was changed. The resonant frequency of the metamaterial operating in the two modes increases without significant difference regardless of the polarization of the incident electromagnetic wave as the width of the H-shaped metamaterial increases. The electric field distribution and the surface current density induced in the metamaterial in the two modes were numerically analyzed by varying the structure ratio of the metamaterial. The numerical analysis clearly revealed the cause of the change in the resonance characteristics as the width of the H-shaped metamaterial changed. The efficacy of the numerical analysis was verified experimentally using the THz-TDS (time-domain spectroscopy) system. The experimental results are consistent with the simulations, clearly demonstrating the meaningfulness of the numerical analysis of the metamaterial. The analyzed resonance properties of the H-shaped metamaterial in the THz frequency range can be applied for designing THz-tunable metamaterials and improving the sensitivity of THz sensors.

메타물질을 이용한 내진설계 (Earthquakeproof Engineering by Metamaterials)

  • 김상훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.97-99
    • /
    • 2013
  • We introduced an earthquake-resistant design using acoustic rnetamaterials. There are two way in that field: one is a cloaking method and the other is a shadow zone method of seismic waves. Cloaking is a general property of a wave that changes the direction depending on the refractive index. Metamaterials control the propagation and transmission of specified parts of the wave and demonstrate the potential to render an object seemingly invisible. The shadow zone is a method of negative modulus using many huge resonators and it attenuates the amplitude of the wave exponentially. We compared and explained the fimdarnental principles of the two methods.

  • PDF

탄성 초음파 회절한계 극복을 위한 하이퍼볼릭 탄성 메타물질의 설계와 구현 (Design and realization of hyperbolic elastic metamaterial for ultrasonic sub-wavelength resolution)

  • 오주환;안영관;승홍민;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.743-744
    • /
    • 2014
  • Hyperbolic metamaterials in which waves can only propagate through the radial direction have achieved much attention these days due to their capability of sub-wavelength resolution. In this work, the realization and optimization of hyperbolic elastic metamaterials are mainly studied. To obtain a new hyperbolic elastic metamaterial, a specially-engineered mass-spring system is introduced. Based on the mass-spring system, the hyperbolic elastic metamaterials are proposed and realized. In addition, the sub-wavelength resolution of the proposed hyperbolic elastic metamaterial is verified by ultrasonic elastic wave experiments. For the experiments, specially-designed magnetostrictive patch transducers are developed to realize two sub-wavelength elastic wave sources. Furthermore, the proposed hyperbolic elastic metamaterial is optimized to maximize its operating frequency ranges by the topology optimization method.

  • PDF

Study on Wave Absorption of 1D-/2D-Periodic EBG Structures and/or Metamaterial Layered Media as Frequency Selective Surfaces

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • 제9권1호
    • /
    • pp.46-52
    • /
    • 2009
  • This paper conducts a study on the frequency-dependent filtering and blocking effects of a variety of periodic structures, dubbed frequency selective surface(FSS). The periodic structures of interest are 1D and 2D repeated patterns of metal patches or slots sitting on the interface between the two different regions in the layered media which will show the capacitive or inductive behaviors and incorporated with the electromagnetic bandgap(EBG) geometry as another stratified media. Besides the normal substances so called double positive(DPS)-type in the layered media, metamaterials of double negative(DNG) are considered as layering components on the purpose of investigating the unusual electromagnetic phenomena. Frequency responses of transmission(absorption in terms of scattering) and reflection will be calculated by a numerical analysis which can be validated by the comparison with the open literature and demonstrated for the periodic structures embedding metamaterials or not. Most importantly, numerous examples of FSS will present the useful guidelines to have absorption or reflection properties in the frequency domain.

Resonance Characteristics of THz Metamaterials Based on a Drude Metal with Finite Permittivity

  • Jun, Seung Won;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • 제2권4호
    • /
    • pp.378-382
    • /
    • 2018
  • In most previous investigations of plasmonic and metamaterial applications, the metallic film has been regarded as a perfect electrical conductor. Here we demonstrate the resonance characteristics of THz metamaterials fabricated from metal film that has a finite dielectric constant, using finite-difference time-domain simulations. We found strong redshift and spectral broadening of the resonance as we decrease the metal's plasma frequency in the Drude free-electron model. The frequency shift can be attributed to the effective thinning of the metal film, originating from the increase in penetration depth as the plasma frequency decreases. On the contrary, only peak broadening occurs with an increase in the scattering rate. The metal-thickness dependence confirms that the redshift and spectral broadening occur when the effective metal thickness drops below the skin-depth limit. The electromagnetic field distribution illustrates the reduced field enhancement and reduced funneling effects near the gap area in the case of low plasma frequency, which is associated with reduced charge density in the metal film.

Analysis of Magnetic Permeability Spectra of Metamaterials Composed of Cut Wire Pairs by Circuit Theory

  • Lim, Jun-Hee;Kim, Sung-Soo
    • Journal of Magnetics
    • /
    • 제21권2호
    • /
    • pp.187-191
    • /
    • 2016
  • Retrieving the equivalent electromagnetic parameters (permittivity and permeability) plays an important role in the research and application of metamaterials. Frequency dispersion of magnetic permeability has been theoretically predicted in a metamaterial composed of cut wire pairs (CWP) separated by dielectric substrate on the basis of circuit theory. Magnetic resonance resulting from antiparallel currents between the CWP is observed at the frequency of minimum reflection loss (corresponding to absorption peak) and effective resonator size can be determined. Having calculated the circuit parameters (inductance L, capacitance C) and resonance frequency from CWP dimension, the frequency dispersion of permeability of Lorentz like magnetic response can be predicted. The simulated resonance frequency and permeability spectra can be explained well on the basis of the circuit theory of an RLC resonator.

Complete Tunneling of Light via Local Barrier Modes in A Composite Barrier with Metamaterials

  • Kim, Kyoung-Youm;Kim, Sae-Hwa
    • Journal of the Optical Society of Korea
    • /
    • 제12권4호
    • /
    • pp.314-318
    • /
    • 2008
  • We investigate the conditions of the complete tunneling of light across a composite barrier made of multiple layers involving metamaterials. It is shown that complete tunneling phenomena are related to the resonance transmission properties of local modes formed in barrier layers and that there are two distinctive kinds of local barrier modes involved in actual complete tunneling: the degenerate inner-barrier mode and the full barrier mode. Complete tunneling occurs via two successive mode couplings: from the incident plane wave to the plane wave in the transmission layer through the direct mediation of these two kinds of local barrier modes.

A Theoretical Study on the Low Transition Temperature of VO2 Metamaterials in the THz Regime

  • Kyoung, Jisoo
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.583-589
    • /
    • 2022
  • Vanadium dioxide (VO2) is a well-known material that undergoes insulator-to-metal phase transition near room temperature. Since the conductivity of VO2 changes several orders of magnitude in the terahertz (THz) spectral range during the phase transition, VO2-based active metamaterials have been extensively studied. Experimentally, it is reported that the metal nanostructures on the VO2 thin film lowers the critical temperature significantly compared to the bare film. Here, we theoretically studied such early transition phenomena by developing an analytical model. Unlike experimental work that only measures transmission, we calculate the reflection and absorption and demonstrate that the role of absorption is quite different for bare and patterned samples; the absorption gradually increases for bare film during the phase transition, while an absorption peak is observed at the critical temperature for the metamaterials. In addition, we also discuss the gap width and VO2 thickness effects on the transition temperatures.

Equivalent material properties of perforated metamaterials based on relative density concept

  • Barati, Mohammad Reza;Shahverdi, Hossein
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.685-690
    • /
    • 2022
  • In this paper, the equivalent material properties of cellular metamaterials with different types of perforations have been presented using finite element (FE) simulation of tensile test in Abaqus commercial software. To this end, a Representative Volume Element (RVE) has been considered for each type of cellular metamaterial with regular array of circular, square, oval and rectangular perforations. Furthermore, both straight and perpendicular patterns of oval and rectangular perforations have been studied. By applying Periodic Boundary conditions (PBC) on the RVE, the actual behavior of cellular material under uniaxial tension has been simulated. Finally, the effective Young's modulus, Poisson's ratio and mass density of various metamaterials have been presented as functions of relative density of the RVE

Drude 모형 특성을 갖는 메타 물질의 임계각에 관한 연구 (A Study on Critical Angle of Metamaterial with Drude Model)

  • 이경원;홍익표;정영철;육종관
    • 한국전자파학회논문지
    • /
    • 제19권9호
    • /
    • pp.1020-1027
    • /
    • 2008
  • 본 논문에서는 드루드 모형(Drude model) 특성을 가지는 메타 물질의 굴절각 및 임계각을 해석적으로 분석하였다. 메타 물질 슬래브(slab)에서의 전자기파의 반사 및 투과 특성을 해석하기 위해 메타 물질에서 적용된 드루드 모형에서는 30 GHz에서 각각 -1의 값을 갖는 유전율, 투자율을 사용하였다. 해석 결과로부터 드루드 모형에서 물리 상수(physical constant)의 부호가 주파수에 따라 연속적으로 변하기 때문에 주파수 대역별로 굴절각과 임계각이 각각 서로 다른 특성을 갖는다는 사실을 유도하였다. 본 논문에서 유도한 메타 물질의 주파수에 따른 굴절각 및 임계각 특성은 메타 물질의 주파수와 물리 상수간의 특성과 같은 전자기적 특성을 이해하고, 메타물질과 유전체간 다층 결합의 전파 특성 해석, 레이돔에 적용 가능한 신소재 메타 물질, 전기적 초소형 안테나와 같은 다양한 전자기파 응용에 유용하게 사용할 수 있다.