• Title/Summary/Keyword: metamaterial

Search Result 230, Processing Time 0.022 seconds

Study on Improvement of the Array Antenna Performance by Isolation Enhancement (격리도 향상을 통한 배열안테나의 성능개선 연구)

  • Park, Minseo;Lee, Jae-Gon;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.229-238
    • /
    • 2016
  • In this paper, we have studied isolation enhancement using a suppression of surface wave to improve performance of array antenna. To reduce isolation between elements of array antenna, perfect magnetic conductor(PMC) and SOFT-surface is designed and located at center of ground plane, isolation and gain is simulated by commercial full wave simulator(HFSS). As a result, isolation of more than 40 dB and gain improvement of 2.2 dBi are obtained at E-plane array in case of both PMC and SOFT-surface. At H-plane array, air coupling is dominant compared to coupling by surface wave. It is conclude that this study is useful for design of compact array antenna and performance improvement of array antenna.

Composite Right/Left Handed(CRLH) Transmission Line with Controllable Transmission Zeros (제어 가능한 전송 영점을 갖는 CRLH 전송 선로)

  • Lee, Ja-Hyeon;Kim, Kyoung-Keun;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.583-590
    • /
    • 2010
  • In this paper, a novel CRLH-TL unit cell with controllable transmission zeros was proposed. Proposed composite right/left handed transmission line(CRLH-TL) unit cell is implemented in the form of the metal-insulator-metal(MIM) capacitors, the microstrip stub inductors, and the co-planar waveguide(CPW) inductor. And this proposed CRLH-TL generates two transmission zeros in lower/upper passband by the effort of electromagnetic couplings between each MIM capacitors and microstrip stub inductors. Using this proposed CRLH-TL, broad bandpass filter for UWB system was designed and fabricated. The measured results reveal that the two transmission zeros are observed in lower/upper passband and the overall size of the filter, excluding the feed line is about 8 mm$\times$8 mm, less then $\lambda_g$/4 on electric size.

Design of the T-SRR and Low Loss Band-pass Filter Using MNG Metamaterial (MNG 메타 인공 물질을 이용한 T-SRR 및 저손실 대역통과 필터의 설계)

  • Yoon, Ki-Cheol;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2512-2520
    • /
    • 2013
  • In this paper, the T-SRR (Triple Split Ring Resonator) using MNG (mu-Negative) meta-material adapted in a low-loss bandpass filter with 3-stages is suggested. The size of the T-SRR in the proposed bandpass filter with low dielectric constant PCB can be easily controlled. And the ${\lambda}/4$ transmission line theory is applied. The proposed T-SRR and filter have the center frequency of 10 GHz with QL value of 184 for military-satellite communication system in I band. The experimental results of the filter show that the insertion and return losses are 1.44 dB and 17.3 dB with bandwidth of 10 %, respectively. The proposed filter will be redesigned by IPD material etc. should be placed here. These instructions give you guidelines for preparing papers for JICCE.

Flexible Zeroth-Order Resonant(ZOR) Antenna Independent of Curvature Diameter (곡률에 독립적인 플렉서블 기판 위에 설계된 영차 공진 안테나)

  • Lim, In-Seop;Chung, Tony J.;Lim, Sung-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • In this paper, we propose a flexible zeroth-order resonant(ZOR) antenna. Its zero phase constant ensures that the antenna performance is independent of substrate deformation. A composite right/left-handed transmission line is designed based on coplanar waveguide technology to realize the zeroth-order resonance phenomenon. The CRLH is an implementation of metamaterial(left handed material) which is composed of shunt inductance and series capacitance. In order to yield additional circuital parameter, chip inductor and gap capacitor is added, respectively. The proposed ZOR antenna provides good performances: reasonable bandwidth(6.5 %) and peak gain(0.69~1.39 dBi). Simulated and measured results show that the antenna's resonant frequencies and radiation patterns are almost unchanged at different curvature diameters of 30, 50, 70 mm, as well as for a flat surface.

Isolation Improvement in Vivaldi Antennas Using DSRR (DSRR을 이용한 비발디 안테나 소자 간 격리도 향상)

  • Yun, Juho;Park, Daesung;Jang, Donghyeok;Hwang, Keum Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.739-744
    • /
    • 2018
  • In this paper, a double split-ring resonator(DSRR) is proposed to improve the isolation between Vivaldi antenna elements. The DSRR was designed using a unit cell simulation and applied to a $1{\times}2$ Vivaldi antenna array to confirm the improvement in the isolation. The unit cell size of the proposed DSRR is $5mm{\times}5mm{\times}1.52mm$ and six unit cells are used. To verify the performance of the proposed DSRR, $1{\times}2$ Vivaldi antenna arrays with and without the DSRR were fabricated and measured. The results show an isolation improvement of 20 dB in the Vivaldi antennas with the DSRR when compared to the Vivaldi antennas without the DSRR.

Fluidically-Controlled Phase Tunable Line Using Inkjet-Printed Microfluidic Composite Right/Left Handed Transmission Line (유체를 이용하여 위상응답을 제어하기 위해 잉크젯 프린팅으로 구현한 미세유체채널 복합 좌·우향 전송선로)

  • Choi, Sungjin;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • In this paper, a novel fluid controlled phase tunable line using inkjet printed microfluidic composite right/left-handed(CRLH) transmission line(TL) is proposed. A CRLH-TL prototype has been inkjet-printed on a paper substrate using silver nano particle ink. In addition, a laser-etched microfluidic channel in poly methyl methacrylate(PMMA) has been integrated with the CRLH TL using inkjet-printed SU-8 as a bonding material. The proposed TL provides excellent phase-tuning capability that is dependent on the different fluidic materials used. As the fluid is changed, the proposed TL can have negative-phase, zero-phase, and positive-phase characteristics at 900 MHz and reflection coefficient is maintained to below -10 dB. The performance of the proposed TL is successfully validated using simulation and measurement results.

A New CPW Dual Band Wilkinson Power Divider Using Composite Right/Left-Handed Transmission Line (Composite Righg/Left-Hand 전송선로를 이용한 새로운 이중대역의 CPW 윌킨슨 전력 분배기)

  • Zhang, Zufu;Wang, Yang;Yoon, Ki-Cheol;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.117-124
    • /
    • 2015
  • In this paper, a new kind of wideband, low-loss composite right/left-handed (CRLH) transmission line (TL) and a Wilkinson power divider are presented. The TL is composed of a parallel meander inductor and a series cutting capacitor based on coplanar waveguide (CPW) structure. The power divider is designed by substituting the CRLH-TL into the conventional transmission line. The experiment results show that the TL has a good agreement with the desired results, exhibiting the return losses under 12 dB from 8.4 GHz to 34.4 GHz. The operating frequencies of the power divider are 12.05 GHz to 13.15 GHz and 16.50 GHz to 19.30 GHz, respectively. The 20 dB bandwidths are 8.9 % and 17.9 %, respectively. Typical experimental measurements are conducted and compared with the simulated results.

Design of Dual-band Power Amplifier using CRLH of Metamaterials (메타구조의 CRLH를 이용한 이중대역 전력증폭기 설계)

  • Ko, Seung-Ki;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.78-83
    • /
    • 2010
  • In this paper, a novel dual-band power amplifier using metamaterials has been realized with one RF GaN HEMT diffusion metal-oxide-semiconductor field effect transistor. The CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. We have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency. Two operating frequencies are chosen at 900 MHz and 2140 MHz in this work. The measured results show that the output power of 39.83 dBm and 35.17 dBm was obtained at 900 MHz and 2140 MHz, respectively. At this point, we have obtained the power-added efficiency (PAE) and IMD of 60.2 %, -23.17dBc and 67.3 %, -25.67dBc at two operation frequencies, respectively.

Realization of High Impedance Surface Characteristics Using a Periodically Transformed Artificial Magnetic Conductor Structure and Reduction Technique of Specific Absorption Rate

  • Lee, Seungwoo;Rhee, Seung-Yeop;Kim, Pan-Yeol;Kim, Nam
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.113-119
    • /
    • 2013
  • We developed a transformed, symmetrical, mushroom-like surface without via holes in cells focused on a 2.4-GHz WLAN band. Each slot in the novel type structure plays a key role in modeling at the desired frequencies. The designed artificial magnetic conductor (AMC) has several advantages, including a small size, a wider bandwidth, a short reflecting distance to the antenna, and easy fabrication because there are no via holes. Overall dimensions of the AMC cell are 21 mm $(Width){\times}21mm$ $(Height){\times}2.6mm$ (Thickness), and the bandwidth is about three times wider (11.7%) compared to that of a conventional AMC (4.0%). For evaluating the performance of the proposed structure, a reflector, which periodically consists of the designed AMC cells, was developed. The antenna with the investigated AMC reflector not only works within a quarter of the wavelength because of the extremely high wave impedance generated by the AMC cells on the surface of the structure but also reduces the specific absorption rate (SAR). Electromagnetic field (EMF) exposure to a human phantom was analyzed by applying the designed reflector to the 2.4-GHz dipole antenna in a tablet PC. The calculated peak SAR averaged over 1 g was 0.125 W/kg when the input power was 1 W and the antenna was located at 20 cm from the human phantom. However, the SAR value was only 0.002 W/kg (i.e., 98.4% blocked) when the designed reflector was inserted in front of the antenna.

Dual-Band Class F Power Amplifier using CRLH-TLs for Multi-Band Antenna System (다중밴드 안테나 시스템을 위한 CRLH 전송선로를 이용한 이중대역 Class F 전력증폭기)

  • Kim, Sun-Young;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.7-12
    • /
    • 2008
  • In this paper, a highly efficiency power amplifier is presented for multi-band antenna system. The class F power amplifier operating in dual-band designed with one LDMOSFET. An operating frequency of power amplifier is 900 MHz and 2.14 GHz respectively Matching networks and harmonic control circuits of amplifier are designed by using the unit cell of composite right/left-handed(CRLH) transmission line(TL) realized with lumped elements. The CRLH TL can lead to metamaterial transmission line with the dual-band holing capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of all harmonic components for high efficiency is very difficult, we have controled only the second- and third-harmonics to obtain the high efficiency with the CRLH TL. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency.