• Title/Summary/Keyword: metallic phase

Search Result 319, Processing Time 0.032 seconds

Thermoelectric Properties of Mn-doped FeSi2 (Mn 첨가 FeSi2의 열전변환특성)

  • Pai, Chul-Hoon;Park, Hyoung-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.315-320
    • /
    • 2008
  • The effect of Mn additive on the thermoelectric properties of Fe-Si alloys prepared by a RF inductive furnace was investigated. The electrical conductivity and Seebeck coefficient were measured as a function of temperature under Ar atmosphere to evaluate their applicability to thermoelectric energy conversion. The electrical conductivity of the specimens increased with increasing temperatures showing typical semiconducting behavior. The electrical conductivity of Mn-doped specimens are higher than that of undoped specimens and increased slightly with increasing the amount of Mn additive. This must be due to the difference in carrier concentration and the amount of residual metallic phase ${\varepsilon}$-FeSi(The ${\varepsilon}$-FeSi was detected in spite of 100 h annealing treatment at $830^{\circ}C$). And metallic conduction increased slightly with increasing the amount of Mn additive. On the other hand, Mn-doped specimens showed the lower Seebeck coefficient due to metallic phase. The power factor of Mn-doped specimens are higher than that of undoped specimens and would be affected by the electrical conductivity more than Seebeck coefficient.

Electrical Properties of n-type Co-doped Fe-Si Alloy (Co 첨가 Fe-Si n형 반도체의 전기적 특성)

  • Pai, Chul-Hoon;Kim, Jeung-Gon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.860-865
    • /
    • 2009
  • The effect of Co additive on the electrical properties of Fe-Si alloys prepared by a RF inductive furnace was investigated. The electrical conductivity and Seebeck coefficient were measured as a function of the temperature under an Ar atmosphere to evaluate their applicability to thermoelectric energy conversion. The electrical conductivity of the specimens increased as the temperature increased, showing typical semiconducting behavior. The electrical conductivity of Co-doped specimens was higher than that of undoped specimens and increased slightly as the amount of Co additive increased. This is most likely due to the difference in the carrier concentration and the amount of residual metallic phase ${\varepsilon}$-FeSi (The ${\varepsilon}$-FeSi was detected in spite of an annealing treatment of 100 h at $830^{\circ}C$). Additionally, metallic conduction increased slightly as the amount of Co additive increased. On the other hand, Co-doped specimens showed a lower Seebeck coefficient due to the metallic phase. The power factor of Co-doped specimens was higher than that of undoped specimens. This would be affected more by the electrical conductivity compared to the Seebeck coefficient.

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

Synthesis of Ni Nanopowder by Wire Explosion in Liquid Media (액중 전기폭발법을 이용한 니켈 나노분말 제조)

  • Cho, Chu-Hyun;Kang, Chung-Il;Ha, Yoon-Cheol;Jin, Yun-Sik;Lee, Kyung-Ja;Rhee, Chang-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.736-740
    • /
    • 2010
  • Nickel wires of 0.8 mm in diameter and 80 mm in length were electrically exploded in liquid media such as water, ethyl alcohol. The distribution of particle sizes was broad from a few micrometers to tens of nanometer. It was identified that the particles could be classified according to its sizes by using centrifugal separator. The powder prepared in distilled water showed mainly pure metallic Ni phase although a little oxide phase was observed. The powders prepared in ethyl alcohol showed complicated unknown phases, which is attributed to the compound of carbon in the organic liquid. This unknown phase was turned to pure metallic Ni phase after heat treatment.

Phase Transformation and Thermoelectric Properties of N-tyre β Processed by Mechanical Alloying (기계적 합금화로 제조한 N형 β의 상변화 및 열전 특성)

  • Eo, Sun-Cheol
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.375-381
    • /
    • 2002
  • N-type ${\beta}-FeSi_2$ with a nominal composition of $Fe_{0.98}Co_{0.02}Si_2$ powders has been produced by mechanical alloying process and consolidated by vacuum hot pressing. As-milled powders were of metastable state and fully transformed to ${\beta}-FeSi_2$ phase by subsequent isothermal annealing. However, as-consolidated $Fe_{0.98}Co_{0.02}Si_2$ consisted of untransformed mixture of ${\alpha}-Fe_2Si_ 5$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting ${\beta}-FeSi_2$ phase. The transformation behavior of ${\beta}-FeSi_2$ was investigated by utilizing DTA, a modified TGA under magnetic field, SEM, and XRD analyses. Isothermal annealing at $830^{\circ}C$ in vacuum led to the thermoelectric semiconducting ${\beta}-FeSi_2$ phase transformation, but some residual metallic $\alpha$ and $\varepsilon$ phases were unavoidable even after prolonged annealing. Thermoelectric properties were remarkably improved by isothermal annealing due to the transformation from metallic $\alpha$ and $\varepsilon$ phases to semiconducting phases.

High performance metal-only fan-beam reflectarray with a delta source applicable for an electromagnetic fence

  • Cho, Yong-Heui
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.44-49
    • /
    • 2011
  • The scattering solutions for multiple rectangular metallic gratings in a perfectly conducting plane excited by the TE and TM delta sources are presented using an overlapping T-block method. A reflectarray composed of rectangular metallic gratings shows fanbeam radiation patterns that are useful for an electromagnetic fence. The scattering characteristics of multiple rectangular gratings were computed in terms of total radiated power and antenna directivity. The design method of a fan-beam reflectarray to obtain high directivity was also compared with superdirective radiation and parabolic reflector phase.

Fluidized Bed Feeding Method of the Particulate Metallic Fuel for a Variable Concentration Quality (유동층 방식의 밀집상과 희박상 거동을 이용한 분말형 금속 연료 정량 공급 방법)

  • Ko, Tae-Ho;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.422-428
    • /
    • 2011
  • 금속을 청정 에너지원으로 이용하기 위해 분말형 금속연료 연소시스템이 필요하고, 이에 대한 선행연구로 분말을 정량 공급할 수 있는 공급기를 설계 제작하였다. 유동층 방식의 분말 공급에 영향을 미칠 수 있는 변수들을 피스톤 및 벤츄리관이 적용된 공급 방법을 사용하여 통제한 후, 조절 가능한 공급기 내부 압력만을 변수로 하여 중요 성능인 분말 공급량을 직접적인 중량 측정 방법으로 측정하였다. 측정 실험의 결과로부터 연소시스템에 적용할 공급기의 작동 조건을 도출할 수 있었고, 작동 조건에서 벗어난 영역에서 분말 공급기가 가지고 있는 문제점을 확인하였다.

  • PDF

Condensation and coagulation of metallic species with fly ash particles in a waste incinerator (폐기물 소각시 생성되는 유해 중금속물질과 연소실내 비산재와의 응축, 응집 현상에 대한 연구)

  • Yu, Ju-Hyeon;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.264-274
    • /
    • 1997
  • A numerical analysis on condensation and coagulation of the metallic species with fly ash particles pre-existing in an incinerator was performed. Waste was simplified as a mixture of methane, chlorine, and small amounts of Pb and Sn. Vapor-phase amounts of Pb- and Sn -compounds were first calculated assuming a thermodynamic equilibrium state. Then theories on vapor-to-particle conversion, vapor condensation onto the fly ash particles, and particle-particle interaction were examined and incorporated into equations of aerosol dynamics and vapor continuity. It was assumed that the particles followed a log-normal size distribution and thus a moment model was developed in order to predict the particle concentration and the particle size distribution simultaneously. Distributions of metallic vapor concentration (or vapor pressure) were also obtained. Temperature drop rate of combustion gas, fly ash concentration and its size were selected as parameters influencing the discharged amount of metallic species. In general, the coagulation between the newly formed metal particles and the fly ash particles was much greater than that between the metal particles themselves or between the fly ash particles themselves. It was also found that the amount of metallic species discharged into the atmosphere was increased due to coagulation. While most of PbO vapors produced from the combustion were eliminated due to combined effect of condensation and coagulation, the highly volatile species, PbCl$_{2}$ and SnCl$_{4}$ vapors tended to discharge into the atmosphere without experiencing either the condensation or the coagulation. For Sn vapors the tendency was between that of PbO vapors and that of PbCl$_{2}$ or SnCl$_{4}$. To restrain the discharged amount of hazardous metallic species, the coagulation should be restrained, the number concentration and the size of pre-existing fly ash particles should be increased, and the temperature drop rate of combustion gas should be kept low.

Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite (비정질 기지 복합재 코팅층의 미세조직 분석 및 기계적 거동)

  • Jang, Beom Taek;Yi, Seong Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.629-636
    • /
    • 2014
  • For surface modification, bulk metallic glass coatings were fabricated using metallic glass powder and a mixture of a self-fluxing alloy or/and hard metal alloys with a heat-resisting property using a high velocity oxy-fuel coating thermal spraying process. Microstructural analyses and mechanical tests were carried out using X-ray diffraction, a scanning electron microscope, an atomic force microscope, a three-dimensional optical profiler, and nanoindenation. As a result, the monolithic metallic glass coating was found to consist of solid particle and lamellae regions that included many pores. Second phase-reinforced composite coatings with a self-fluxing alloy or/and hard metal alloy additives were employed with in-situ $Cr_2Ni_3$ precipitate or/and ex-situ WC particles in an amorphous matrix. The mechanical behaviors of the solid particles and lamella regions showed large hardness and elastic modulus differences. The mechanical properties of the particle regions in the metallic glass composite coatings were superior to those of the lamellae regions in the monolithic metallic glass coatings, but indicated similar trends in matrix region of all the coating layers.

Studies in Iron Manufacture Technology through Analysis of Iron Artifact in Han River Basin during the Proto-Three Kingdoms

  • Kim, Soo-Ki
    • Conservation and Restoration of Cultural Heritage
    • /
    • v.1 no.1
    • /
    • pp.9-22
    • /
    • 2012
  • The most widely excavated iron artifacts used as weapons or farm tools from central southern regions of Korea were subjects of non-metallic inclusion analysis through metallographic examination, microhardness measurement, and scanning electron microscopy with energy dispersive X-ray spectroscopy. Through metallographic interpretation and study of the analyzed results, the steel manufacturing and iron smelting using heat processing in the iron artifacts excavated from the central southern region of the ancient Korean peninsula was studied, and the analysis of the non-metallic inclusions mixed within the metallic structures was interpreted as the ternary phase diagram of the oxide to infer the type of iron ores for the iron products and the temperature of the furnace used to smelt them. Most of the ancient forged iron artifacts showed $Al_2O_3/SiO_2$ with high $SiO_2$ contents and relatively low $Al_2O_3$ contents for iron ore, indicating t hat for $Al_2O_3$ below 5%, it is presumed that magnetic iron ores were reduced to bloom iron (sponge iron) with direct-reduction process for production. The temperature for extraction of wustite for $Al_2O_3$ below 1% was found to be $1,020{\sim}1,050^{\circ}C$. Considering the oxide ternary constitutional diagram of glassy inclusions, the steel-manufacturing temperature was presumed to have been near $1,150{\sim}1,280^{\circ}C$ in most cases, and minimum melting temperature of casting iron part excavated in Daeseong-ri. Gyeonggi was near $1,400^{\circ}C$, and it is thought that hypoeutectic cast iron of about 2.3% carbon was casted and fragility of cast iron was improved by decarburizing in solid state.