• Title/Summary/Keyword: metallic phase

Search Result 319, Processing Time 0.03 seconds

A Case of Intralaryngeal Metallic Foreign Body which Penetrated by Transcutaneous Route (경부를 관통한 후두 내 금속이물 1예)

  • 최지훈;우정수;이승훈;이흥만
    • Korean Journal of Bronchoesophagology
    • /
    • v.9 no.1
    • /
    • pp.92-95
    • /
    • 2003
  • Laryngeal foreign bodies are not common among the foreign bodies of aerodigestive tract. It is relatively easy to diagnose in acute phase of entry because of a readily\ulcorner available history of intake, and signs or symptoms referable to the foreign body in the highly sensitive air passage. However, on occasion, sudden death by respiratory failure occurs due to complete obstruction of airway. Therefore, it is common and safe to remove the laryngeal foreign bodies by suspension laryngoscope under general anesthesia after tracheostomy. Recently, the authors experienced a case of metallic foreign body in larynx penetrating neck, which was removed by suspension laryngoscope under general anesthesia without any life threatening complication.

  • PDF

Sintered $Fe_3Al$ Intermetallic - A New Filter Element for Hot Gas Filtration

  • Xing, Y.;Kuang, X.;Wang, F.;Kuang, C.;Fang, Y.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.597-598
    • /
    • 2006
  • Gas filtration at high temperature from industrial processes offers various advantages such as increasing process efficiency, improving heat recovery and materials resource recovery, etc. At the same time, it is an advanced environment protection technology. This paper describes a newly developed metallic filter element. The manufacturing process of sintered $Fe_3Al$ metallic powder and the mechanical and filtration characteristics of this filter element were investigated. In this work, the phase constituent changes of the $Fe_3Al$ powder during sintering were studied. The newly developed filter elements were found to have excellent corrosion resistance, good thermal resistance, high strength and high filtration efficiency.

  • PDF

Numerical Analysis of Heat Transfer and Solidification in the Continuous Casting Process of Metallic Uranium Rod (금속 우라늄봉의 연속주조공정에 대한 열전달 및 응고해석)

  • Lee, Ju-Chan;Lee, Yoon-Sang;Oh, Seung-Chul;Shin, Young-Joon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.80-88
    • /
    • 2000
  • Continuous casting equipment was designed to cast the metallic uranium rods, and a thermal analysis was carried out to calculate the temperature and solidification profiles. Fluid flow and heat transfer analysis model including the effects of phase change was used to simulate the continuous casting process by finite volume method. In the design of continuous casting equipment, the casting speed, pouring temperature and cooling conditions should be considered as significant factors. In this study, the effects of casting speed, pouring temperature, and air gap between the uranium and mold were investigate. The results represented that the temperature and solidification profiles of continuous casting equipment varied with the casting speed, pouring temperature, and air gap.

  • PDF

MAGNETIC PROPERTIES OF NANOCRYSTALLIZED METALLIC GLASSES AT ELEVATED TEMPERATURES

  • Lachowicz, Henryk K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.589-596
    • /
    • 1995
  • In the present paper some of the magnetic properties of the nanocrystalline Fe-based magnets produced by an appropriate annealing of their metallic glass precursors are reviewed. These properties are discussed on the grounds of their characteristics measured at the elevated temperatures. It is shown that the effective magnetostriction these magnets display, results from the competition among two contributions of the opposite sign originating from the individual magnetic phases, crystalline phase and the residual glassy matrix in which the nanocrystallites are embedded. It is also shown that at certain conditions the magnets considered expose superparamagnetic behavior and that their isothermal magnetization characteristics can successfully be used to calculate the distribution of the particle volumes. Application of the recently invented new genetic algorithm method, a powerful tool to calculate these distributions is, finally, presented.

  • PDF

Photoacoustic Determination of Thermophysical Properties of Thin Metallic Plates by Using Parameter Estimation (광음향학적 방법에 의한 얇은 금속판의 열물성 측정)

  • 김석원
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.219-226
    • /
    • 1991
  • The phase and the amplitude of the photoacoustic signal were measured as a function of chopping frequency for several kinds of widely used thin metallic plates (stainless steel 304, brass, aluminum and copper) attached to plexiglass backing. The experimental data have been analyzed systematically by parameter estimation technique based on the two-layer model developed from Rosencwaig-Gersho (R-G) theory. Using this analysis, the values of thermal diffusivity and thermal effusivity of the materials have been determined.

  • PDF

Antiferromagnetically Exchange-coupled Two Phase Magnets: Co/Co2TiSn

  • Kim, Tae-Wan;Oh, Jung-Keun
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.43-52
    • /
    • 2008
  • The objective of this paper is to review the magnetic and magneto-transport properties of Co/$Co_2TiSn$ consisting of two metallic magnetic phases that are antiferromagnetically exchange-coupled at the phase boundary. The bulk Co/$Co_2TiSn$ system, which has a $Co_2$TiSn Heusler alloy precipitates in the hexagonal Co matrix, showed an unusual coercivity change with a concurrent change in temperature, and was modeled on the basis of a wall formation caused by exchange coupling at the phase boundary. For measurements of magneto-transport properties, Co/$Co_2TiSn$ thin films that had two-magnet phases were deposited using a magnetron sputtering system with a composite target. The magnetization process in the films is also explained on the basis of the model of wall formation at the phase boundary. Annealed Co/$Co_2TiSn$ films showed a 0.12% GMR effect, indicating the scattering of polarized conduction electrons due to the antiparallel exchange coupling at the phase boundary. The scattering process of conduction electrons at the phase boundary was modeled with relation to the magnetization process.

Oxygen Deficiency, Hydrogen Doping, and Stress Effects on Metal-Insulator Transition in Single-Crystalline Vanadium Dioxide Nanobeams

  • Hong, Ung-Gi;Jang, Seong-Jin;Park, Jong-Bae;Bae, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.424.1-424.1
    • /
    • 2014
  • Vanadium dioxide (VO2) is a strongly correlated oxide exhibiting a first-order metal-insulator transition (MIT) that is accompanied by a structural phase transition from a low temperature monoclinic phase to a high-temperature rutile phase. VO2 has attracted significant attention because of a variety of possible applications based on its ultrafast MIT. Interestingly, the transition nature of VO2 is significantly affected by stress due to doping and/or interaction with a substrate and/or surface tension as well as defects. Accordingly, there have been considerable efforts to understand the influences of such factors on the phase transition and the fundamental mechanisms behind the MIT behavior. Here, we present the influences of oxygen deficiency, hydrogen doping, and substrate-induced stress on MIT phenomena in single-crystalline VO2 nanobeams. Specifically, the work function and the electrical resistance of the VO2 nanobeams change with the compositional variation due to the oxygen-deficiency-related defects. In addition, the VO2 nanobeams during exposure to hydrogen gas exhibit the reduction of transition temperature and the complex phase inhomogenieties arising from both substrate-induced stress and the formation of the hydrogen doping-induced metallic rutile phase.

  • PDF

Production of Porous Metallic Glass Granule by Optimizing Chemical Processing

  • Kim, Song-Yi;Guem, Bo-Kyung;Lee, Min-Ha;Kim, Taek-Soo;Eckert, Jurgen;Kim, Bum-Sung
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.251-255
    • /
    • 2014
  • In this study, we optimized dissolution the dissolution conditions of porous amorphous powder to have high specific surface area. Porous metallic glass(MG) granules were fabricated by selective phase dissolution, in which brass is removed from a composite powder consisting of MG and 40 vol.% brass. Dissolution was achieved through various concentrations of $H_2SO_4$ and $HNO_3$, with $HNO_3$ proving to have the faster reaction kinetics. Porous powders were analyzed by differential scanning calorimetry to observe crystallization behavior. The Microstructure of milled powder and dissolved powder was analyzed by scanning electron microscope. To check for residual in the dissolved powder after dissolution, energy dispersive X-ray spectroscory and elemental mapping was conducted. It was confirmed that the MG/brass composite powder dissolved in 10% $HNO_3$ produced a porous MG granule with a relatively high specific surface area of $19.60m^2/g$. This proved to be the optimum dissolution condition in which both a porous internal granule structure and amorphous phase were maintained. Consequently, porous MG granules were effectively fabricated and applications of such structures can be expanded.

Structural Properties of Ammoniated Thin Cr Films with Oxygen Incorporated During Deposition (산소가 혼입된 Cr 박막의 질화처리에 따른 구조적 특성)

  • Kim, Jun;Byun, Changsob;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.194-200
    • /
    • 2014
  • Metallic Cr film coatings of $1.2{\mu}m$ thickness were prepared by DC magnetron sputter deposition method on c-plane sapphire substrates. The thin Cr films were ammoniated during horizontal furnace thermal annealing for 10-240 min in $NH_3$ gas flow conditions between 400 and $900^{\circ}C$. After annealing, changes in the crystal phase and chemical constituents of the films were characterized using X-ray diffraction (XRD) and energy dispersive X-ray photoelectron spectroscopy (XPS) surface analysis. Nitridation of the metallic Cr films begins at $500^{\circ}C$ and with further increases in annealing temperature not only chromium nitrides ($Cr_2N$ and CrN) but also chromium oxide ($Cr_2O_3$) was detected. The oxygen in the films originated from contamination during the film formation. With further increase of temperature above $800^{\circ}C$, the nitrogen species were sufficiently supplied to the film's surface and transformed to the single-phase of CrN. However, the CrN phase was only available in a very small process window owing to the oxygen contamination during the sputter deposition. From the XPS analysis, the atomic concentration of oxygen in the as-deposited film was about 40 at% and decreased to the value of 15 at% with increase in annealing temperature up to $900^{\circ}C$, while the nitrogen concentration was increased to 42 at%.

Influence of Crystal Structure on the Chemical Bonding Nature and Photocatalytic Activity of Hexagonal and Cubic Perovskite Compounds

  • Lee, Sun-Hee;Kim, In-Young;Kim, Tae-Woo;Hwang, Seong-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.817-821
    • /
    • 2008
  • We have investigated the influence of the crystal structure on the chemical bonding nature and photocatalytic activity of cubic and hexagonal perovskite A[$Cr_{1/2}Ta_{1/2}$]O3 (A = Sr, Ba) compounds. According to neutron diffraction and field emission-scanning electron microscopy, the crystal structure and particle size of these compounds are strongly dependent on the nature of A-site cations. Also, it was found that the face-shared octahedra in the hexagonal phase are exclusively occupied by chromium ions, suggesting the presence of metallic (Cr-Cr) bonds. X-ray absorption and diffuse UV-vis spectroscopic analyses clearly demonstrated that, in comparison with cubic Sr[$Cr_{1/2}Ta_{1/2}$]$O_3$ phase, hexagonal Ba[$Cr_{1/2}Ta_{1/2}$]$O_3$ phase shows a decrease of Cr oxidation state as well as remarkable changes in interband Cr d-d transitions, which can be interpreted as a result of metallic (Cr-Cr) interactions. According to the test of photocatalytic activity, the present semiconducting materials have a distinct activity against the photodegradation of 4-chlorophenol. Also the Srbased compound was found to show a higher photocatalytic activity than the Ba-based one, which is attributable to its smaller particle size and its stronger absorption in visible light region.