• 제목/요약/키워드: metallic conductivity

검색결과 153건 처리시간 0.039초

R2R 공정에서 적외선가열과 열풍을 혼합한 건조방식에서 전도성 금속 잉크의 건조 및 큐어링 공정 특성에 관한 실험적 연구 (An Experimental Study on the Drying and Curing Characteristics of Conductive metallic ink using Combined IR and Hot Air Type in the Roll-to-Roll System)

  • 김영모;홍승찬;이재효
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.73-78
    • /
    • 2010
  • This research is about the drying and curing characteristic of conductivity metallic ink on-line curing device in order to improve the curing time for productivity in RFID Gravure printing. The curing process is carried out to increase the electric conductivity after the metallic ink is printed on the substrate. The metal ink is composed of nano-sized silver or copper particles. In this research, the combined IR and Hot air curing system is used and its results is compared with those of oven, IR and Hot Air type respectively. Generally the curing time in the past is about 3 minutes. But the combined system (IR+Hot Air) in this research shows that curing time is less than 30 seconds. These results is much faster than those of other system. This study can be help to make Roll-to-Roll drying and curing process for mass and continuous production on-line.

저온 PEMFC용 금속분리판 코팅의 내구 특성 연구 (Coating Durability of Metal Bipolar plate for Low Temperature PEMFC)

  • 강성진;전유택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.82.2-82.2
    • /
    • 2010
  • The development of bipolar plate having high efficiency and chemical properties has a major impact on fuel cell applications commercialization. Even though graphite bipolar plate has high electric conductivity and chemical resistance, it has demerits about mass production and brittle property for commercialization. Hence, metallic bipolar plate can be substitute for fuel cell bipolar plate. Although its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions, metallic bipolar plate for PEMFC is more suitable for automotive and residential power generation system because of its high mechanical strength, low gas permeability and applicability to mass production. Therefore, several types of coating has been applied to prevent corrosion and oxide film growth and to achieve more high durability. This work presents durability of coated metal bipolar plate for low temperature PEMFC which made for fuel cell vehicle. This results showed surface treatment increase long-term durability, even electric conductivity and corrosion resistance.

  • PDF

Geometric structure and electronic behavior of Rh decorating effect on zigzag CNTs (n=7-12): A DFT study

  • Cui, Hao;Zhang, Xiaoxing;Zhou, Yongjian;Zhang, Jun
    • Carbon letters
    • /
    • 제26권
    • /
    • pp.61-65
    • /
    • 2018
  • Comprehensive calculations of the Rh decoration effect on zigzag CNTs with n ranging from 7 to 12 were conducted in this work to understand the effect of Rh doping on geometric structures and electronic behaviors upon metallic and semiconducting CNTs. The obtained results indicated that Rh dopant not only contributes to the deformation of C-C bonds on the sidewall of CNTs, but also transforms the electron distribution of related complexes, thereby leading to a remarkable increase of the conductivity of pure CNTs given the emerged novel state within the energy gap for metallic CNTs and the narrowed energy gap for semiconducting CNTs. Our calculations will be meaningful for exploiting novel CNT-based materials with better sensitivity to electrons and higher electrical conductivity compared with pure CNTs.

Transport properties of carbide superconductor La2C3

  • Kim, J.S.;Kremer, R.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권1호
    • /
    • pp.6-10
    • /
    • 2013
  • We investigate the electrical and thermal transport properties of a sesquicarbide superconductor $La_2C_3$, including electrical resistivity, thermoelectric power, and thermal conductivity. The electrical resistivity exhibits a typical metallic character with a saturation behavior at high temperatures. The thermoelectric power shows a metallic behavior with pronounced phonon-drag effect, comparable with pure metals. The broad peak of the thermal conductivity is observed in the superconducting state, which is rapidly suppressed by magnetic fields. These observations suggest that the electron-phonon scattering is significant in $La_2C_3$, which is relevant with the relatively high-$T_c$ in $La_2C_3$ through strong electron-phonon coupling with low frequency phonon modes.

도전성 플라스틱의 전도 퍼콜레이션 (The Conductivity Percolation of Conducting Plastic Materials)

  • 김인찬
    • 대한기계학회논문집B
    • /
    • 제23권6호
    • /
    • pp.713-721
    • /
    • 1999
  • A composite plastic, where long metallic fibers are used as filling materials, is transformed from nonconducting to conducting medium as the volume fraction of filling metallic fibers is increased from zero : such drastic change in property is called the percolation. It is desired both for practical and theoretical purposes to understand the physics underlying the percolation and to estimate the percolation threshold that is defined by the minimum volume fraction of the metallic fibers for which the percolation occurs. In this study, percolation thresholds are calculated by Monte Carlo Computer simulation. Both lattice and continuum spaces are considered and detailed microstructures of metallic fibers are modelled as rigid and flexible bodies for both model spaces. Simulations are carried out for wide range of aspect ratios and discussions are given.

비금속 공기식 집열기의 이론 분석 및 성능실험 (Theoretical & Experimental Study on the Air-Type Nonmetallic Collectors.)

  • 이동원;이종호
    • 태양에너지
    • /
    • 제6권1호
    • /
    • pp.77-86
    • /
    • 1986
  • In this study, theoretical & Experiemental Analysis on three different air type solar collectors (One of metallic material: AI, two of non-metallic materials; GIWA & Slate) are performed. The results of three different collectors show the similiar performance in spite of different absorber material. The results of experiment are coincided with the theoretical results, and thus it is possible to estimate the performance of collector for the other experiment measuring variables. As a result, the thermal conductivity has no influence on the collector efficiency, because air, heat transfer medium, flows through over the whole surface of absorber plate.

  • PDF

나노유체의 열전도율 실험과 열전달 메커니즘의 제시 (Heat Conductivity Test and Conduction Mechanism of Nanofluid)

  • 박권하;이진아;김혜민
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.862-868
    • /
    • 2008
  • Many studies have been conducted to increase heat transfer in fluid. One of the various heat transfer enhancement techniques is suspending fine metallic or nonmetallic solid powder in traditional fluid. Nanofluid is defined as a new kind of heat transfer fluid containing a very small quantity of nanometer particles that are uniformly and stably suspended in a liquid. This study investigates the effect of nanofluid containing diamond, CuNi and CuAg nanometer particles, and proposes the heat transport mechanism of nanofluid. The test result shows that the thermal conductivity of nanofluid is much higher than that of traditional fluid, and the increasing rate of the conductivity is dependent on the conductivity of the solid metal.

$LaNiO_3$전도성 세라믹의 합성과 도전특성 (Synthesis and Conductivity Properties of $LaNiO_3$ Ceramic Conductors)

  • 조정호;조주현;김강언;정수태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.406-409
    • /
    • 2001
  • The conductivity properties and synthesis of $LaNiO_{3}$ ceramics from $La_{1+\delta}NiO_{3}(\delta=-0.06,0,0.06)$ were investigated. A single perovskite phase was realized at $800^{\circ}C$. $La_{2}NiO_{4}$ and other unexpected oxide were observed at $1000^{\circ}C$. The Microstructure was showed clearly that it is a low density porous material. $LaNiO_3$ ceramic showed a metallic conductivity. The conductivity of La rich samples had a higher value than the La poor samples.

  • PDF

Thermal Conductivity Measurement of Insulation Material for Superconducting Application

  • Chol, Y.S.;Kim, D.L.;Shin, D.W.;Hwang, S.D.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권2호
    • /
    • pp.29-32
    • /
    • 2011
  • The thermal properties of insulation material are essential to develop a high-temperature superconducting (HTS) power cable to be operated at around liquid nitrogen temperature. Unlike metallic materials, nonmetallic materials have a high thermal resistance; therefore special attention needs to be paid to estimate heat flow correctly. Thus, we have developed a precise instrument for measuring the thermal conductivity of insulating materials over a temperature range from 40 K to near room temperature using a cryocooler. Firstly, the measurement of thermal conductivity for Teflon is carried out for accuracy confirmation. For a supplied heat flux, the temperature difference between warm and cold side is measured in steady state, from which the thermal conductivity of Teflon is calculated and compared with published result of NIST. In addition, the apparent thermal conductivity of Polypropylene laminated paper (PPLP) is presented and its temperature dependency is discussed.