• Title/Summary/Keyword: metalaxyl resistance

Search Result 26, Processing Time 0.029 seconds

Changes of Mating Type Distribution and Fungicide-resistance of Phytophthora infestans Collected from Gangwon Province (강원지역 감자 역병균 Phytophthora infestans의 교배형 및 약제저항성 변화)

  • Park, Kyeong-Hun;Ryu, Kyoung-Yul;Yun, Jeong-Chul;Jeong, Kyu-Sik;Kim, Jeom-Soon;Kwon, Min;Kim, Byung-Sup;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.274-278
    • /
    • 2010
  • Potato late blight caused by Phytophthora infestans was the most constrain disease at potato cultivation areas. The mating type distribution and fungicides response of P. infestans were investigated to elucidate the changes of pathogen from Gangwon province. On the fungal isolates in 2006, 58.7% were A1 mating type and 41.3% were A2 mating type. In 2007, A1 mating type isolates increased to 93.3% and A2 mating type isolates were collected from Jinbu areas as much as 6.7%. About 234 isolates analysed for metalaxyl response, the results was resistance 73.7%, intermediate 18.8% and sensitive 7.5% in 2006. And it was resistance 59.4%, intermediate 4.0% and sensitive 36.6% in 2007. It meant that mating type distribution and fungicide response were very different over the collection sites. Minimal inhibition concentration (MIC) of dimethomorph examined with 126 isolates in 2006 and 106 isolates in 2007. MIC over $1.0\;{\mu}g/ml$ was 56.3% in 2006 and it was 3.8% in 2007. The average $EC_{50}$ value of P. infestans was $0.37\;{\mu}g/ml$ in 2006, but it decreased to $0.12\;{\mu}g/ml$ in 2007. Fungicides response and pathogenesis of P. infestans should be monitored continuously to enhance the chemical efficacy at potato fields.

Ginseng Cultural Management and Research Update in Atlantic Canada

  • Ju, H.Y.;Asiedu, S.K.;Hong, S.C.;Gray, B.;Sampson, G.;LeBlanc, P.
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.103-108
    • /
    • 1998
  • The Canadian production of American ginseng (Panax quinquefolius L.) occurs mainly in Ontario, British Columbia and the Atlantic provinces. Although ginseng is a profitable crop, its successful production is dependent on careful consideration of cultural management f include site selection, site preparation, seed selection and handling, shading actors which and mulching, pest and nutritional management, and handling of harvested crops. Diseases of particular concern in Atlantic Canada are root rots caused by Phytopkthora cactorum, Cylindrocarpon destructans and Fusarium sp. Recently two systemic fungicides (metalaxyl and fosetylal) were registered; however, growers in Atlantic Canada have experienced metalaxyl resistance resulting from the reliance on this single compound for the control of Phytophthora sap. Current research being conducted on alternative control of these diseases will be discussed. In weed control research, 2, 4-D, MCPA, clopyralid have continued to show promise for weed contro1 at low rates. In trials to evaluate non-selective herbicides as post-senescence or pre-emergence in ginseng, glyphosate (Round-up) provided control of perennials as well as willowherb and lambsquarters. In phytoxicity trials, ginseng significantly tolerated grass herbicides, including clethodim, rimsulfuron, trakloxydim, nicosulfuron and fenoxyprop. For broadleaf herbicides, significant tolerance was shown for bromoxynil, thifensulfuron methyl, flumetulam/clopyralid, thifensulfuro/tribenuron. Disease and weed management of ginseng in Atlantic Canada will be discussed.

  • PDF

Establishment of Baseline Sensitivity of Phytophthora capsici Causing Pepper Phytophthora Blight to Carboxylic Acid Amide Fungicides (Carboxylic acid amide계 살균제에 대한 고추 역병균 Phytophthora capsici의 감수성 기준 설정)

  • Kim, Jin-Ho;Kim, Joo-Hyung;Lee, Kyeong-Hee;Rho, Chang-Woo;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.456-462
    • /
    • 2010
  • Baseline sensitivity to benthiavalicarb, iprovalicarb and dimethomorph included into carboxylic acid amide (CAA) group was evaluated in 180 isolates of Phytophthora capsici over 4 years from 2005 to 2008. $EC_{50}$ (effective concentration inhibiting mycelial growth by 50%) value of benthiavalicarb ranged from $0.015{\mu}g\;mL^{-1}$ to $0.049{\mu}g\;mL^{-1}$ with a mean of $0.033{\mu}g\;mL^{-1}$. The mean values of $EC_{50}$ of iprovalicarb and dimethomorph were 0.411 (0.197 - 0.556) ${\mu}g\;mL^{-1}$ and 0.271 (0.101 - 0.798) ${\mu}g\;mL^{-1}$, respectively. Although there was no increasing tendency in $EC_{50}$of benthiavalicarb and iprovalicarb during 4 years, $EC_{50}$ of dimethomorph was increased gradually by laps of time. There was no cross-resistance between each fungicide used in this study and metalaxyl. Among fungicides included into CAA group, there was a positive correlation between benthiavalicarb and iprovalicarb, and between dimethomorp and mandipropamid.

Phenyl substituent effect on the fungicidal activity of N-Phenyl-O-phenylthionocarbamate derivatives (N-Phenyl-O-phenylthionocarbamate 유도체의 항균활성에 미치는 phenyl 치환기의 효과)

  • Sung, Nack-Do;Soung, Min-Gyu
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • A series of N-phenyl-O-phenylthionocarbamate derivatives were synthesized and determinated fungicidal activities in vitro against gray mold (Botrytis cinerea) and capsicum phytophthora blight (Phytophthora capsici) which showed resistance and sensitivity to benomyl and metalaxyl as systemic fungicides, respectively. The structure-activity relationship (SAR) was investigated by Free-Wilson analysis method and Hansch method. From the basis on the findings, the N-phenyl(X) groups had more contributions than O-phenyl(Y) groups did and ortho-substituents on the N-phenyl group showed high fungicidal activities. Especially, 4-cyano substituent, 2 as X-group showed 50% inhibition($pI_{50}=5.50$) of hyphae growth at 0.8ppm against resistance P. capsici (RPC) And hydroxyl substituents, 12 and 23 displayed the highest fungicidal activity against resistant B. cinerea (RBC), sensitive B. cinerea (SBC), and sensitive P. capsici (SPC). Antifungal activities of SPC were dependent upon molar refractivity (MR) constant and those of others relied on hydrophobic parameters (${\sigma}$ and logP). For increasing fungicidal activity against RPC and SBC, the optimum values of the sigma (${\sigma}$) and field(F) constants as electron withdrawing groups were 0.32 and 0.18, respectively.

  • PDF

Identification of novel genes for improvement of downy mildew resistance in Zea mays (옥수수의 노균병 저항성 증대를 위한 저항성 유용유전자 발굴)

  • Min, Kyeong Do;Kim, Hyo Chul;Kim, Kyung-Hee;Moon, Jun-Cheol;Lee, Byung-Moo;Kim, Jae Yoon
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.493-502
    • /
    • 2019
  • Maize (Zea mays L.) is a C4-plant and one of the three major crops grown worldwide. Because of its high productivity, maize is considered as one of the most important food and feed stocks in the world. Recently, bioethanol from maize was predominantly generated in the USA and Brazil. Infection of maize by several diseases resulted in a huge disaster and prevented maize production. Downy mildew, caused by Peronosclerospora sorghi, is one of the most serious diseases of maize. Despite efforts to develop downy mildew-resistant cultivars or seed treatment with metalaxyl, downy mildew persists as a serious pathogen and is still prevalent in specific geographical locations. Analysis of soils infected with downy mildew and investigation of candidates associated with downy mildew resistance is an attractive method to overcome downy mildew damage in maize. In a previous study, we reported that maize chromosome 6 carries a possible candidate gene for downy mildew resistance. Using bioinformatics tools and RT-PCR analysis, five novel genes including bZIP, OFP transcription factor, and Ppr were identified as candidate genes associated with downy mildew resistance.

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF