• Title/Summary/Keyword: metal working operation

Search Result 33, Processing Time 0.016 seconds

Exposure Characteristics of Chemical Hazards in Metalworking Operations using an Employee Exposure Assessment Database (작업환경측정 자료를 이용한 CNC공정의 유해물질 노출 특성)

  • Lee, Jaehwan;Park, Donguk;Ha, Kwonchul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.2
    • /
    • pp.230-239
    • /
    • 2018
  • Objective: The purpose of this study is to identify the kinds and exposure levels of health hazards in the metalworking process in relation to acute poisoning accidents caused by methanol in 2016. Methods: The number of industries, workplaces, exposed workers, regional distribution, and exposure level of health hazards in metalworking process were investigated based on employee exposure assessment database provided by KOSHA (the Korea Occupational Safety and Health Agency), which was collected from workplace hazard evaluation programs in Korea. Exposure metrics for methanol were assessed by RCR (risk characterization ratio). Results: The numbers of processes, workplaces, and exposed workers of metalworking, which include CNC (computer numerical control) were 25, 14,405, and 169,102 respectively. The numbers of samples of chemical hazards including methanol were 91,325, and it was found that workers in metalworking were exposed to 249 kinds of chemical hazards. There were 16 kinds of special controlled substances including beryllium. It is estimated that the number of workplaces involving CNC process was 2,537, and the number of exposed workers was 27,976. In CNC process, the total number of workplaces handling methanol was 36, and 298 workers were estimated to be exposed. There was no exceeded that surpassed the OEL and 49% of samples were below the limit of detection. Methanol exposure concentrations in Gyeonggido Province were statistically significantly higher than in other areas (p <0.0001). Conclusions: In the metalworking process including CNC, there is exposure to a wide variety of health hazards. There was no sample exceeding the OEL for methanol. Therefore, it is necessary to recognize the limits of the employee exposure assessment system and urgently improve measures to prevent the occurrence of events like methanol poisoning.

A study of Double Sheet Multi-forming Equipment (2겹 판재 멀티포밍 장치에 관한 연구)

  • Yun, Jae-Woong;Son, Ok-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.49-55
    • /
    • 2017
  • Most motor cases adopt deep drawing products, which are excellent in waterproof functions, concentricity, right angle, and quality. In addition, the blower motor and seat motor, which are installed in the car interior and do not require waterproof function, adopts a multi-forming manufacturing method. The deep drawing process requires an expensive transfer press that can digest approximately 12 processes, such as drawing, trimming and piercing. On the other hand, products can be produced with low investment because the multi-forming method is composed of one multi-forming machine or one multi-forming machine and one press. The multi-forming machine is a high-priced facility that is mostly imported and a bending / shearing process multi-foaming machine, which was developed by domestic small and medium-sized enterprises, is not enough to reduce the production cost. An integral multi - forming machine is used as a limited working method for thin material and small products. A large product and thick material has a high shear load. A large product and thick material has a high shear load and uses a single crank press. After blanking, the worker manually feeds the material to a multi-forming machine. When the bending operation is performed in the multi-forming machine, it is transferred to the press again to calibrate the dimensions. This variance in work processes has resulted in lower cost competitiveness due to the lower productivity, quality issues, and excessive operator input. The aim of this study was to establish a stable and cost - effective production system through bending / shearing process separation and facility automation.

A Study on the Factors Causing Analytical Errors through the Estimation of Uncertainty for Cadmium and Lead Analysis in Tomato Paste (불확도 추정을 통한 토마토 페이스트에서 카드뮴 및 납 분석의 오차 발생 요인 규명)

  • Kim, Ji-Young;Kim, Young-Jun;Yoo, Ji-Hyock;Lee, Ji-Ho;Kim, Min-Ji;Kang, Dae-Won;Im, Geon-Jae;Hong, Moo-Ki;Shin, Young-Jae;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.169-178
    • /
    • 2011
  • BACKGROUND: This study aimed to estimate the measurement uncertainty associated with determination of cadmium and lead from tomato paste by ICP/MS. The sources of measurement uncertainty (i.e. sample weight, final volume, standard weight, purity, molecular weight, working standard solution, calibration curve, recovery and repeatability) in associated with the analysis of cadmium and lead were evaluated. METHODS AND RESULTS: The guide to the expression of uncertainty was used for the GUM (Guide to the expression of Uncertainty in Measurement) and Draft EURACHEM/CITAC (EURACHEM: A network of organization for analytical chemistry in Europe/Co-Operation on International Traceability in Analytical Chemistry) Guide with mathematical calculation and statistical analysis. The uncertainty components were evaluated by either Type A or Type B methods and the combined standard uncertainty were calculated by statistical analysis using several factors. Expected uncertainty of cadmium and lead was $0.106{\pm}0.015$ mg/kg (k=2.09) and $0.302{\pm}0.029$ mg/kg (k=2.16), on basis of 95% confidence of Certified Reference Material (CRM) which was within certification range of $0.112{\pm}0.007$ mg/kg for cadmium (k=2.03) and $0.316{\pm}0.021$ mg/kg for lead (k=2.01), respectively. CONCLUSION(s): The most influential components in the uncertainty of heavy metals analysis were confirmed as recovery, standard calibration curve and standard solution were identified as the most influential components causing uncertainty of heavy metal analysis. Therefore, more careful consideration is required in these steps to reduce uncertainty of heavy metals analysis in tomato paste.