• Title/Summary/Keyword: metal waste

Search Result 925, Processing Time 0.024 seconds

The Worldwide Trend of waste Treatment Technology and DAEWOO-TS Gasification & Melting System (세계의 폐기물처리기술 동향과 DAEWOO-TS 열분해 가스화 용융기술)

  • 허일상;김우봉
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.2
    • /
    • pp.103-114
    • /
    • 2001
  • Worldwide trend of waste treatment technology is rapidly transferring from "incineration system" to "gasification & melting system" which can derive the resources from waste and charge no more environmental burden to nature. And therefore it is necessary for our country to adopt gasification & melting system urgently to present the land pollution and lack of landfill area. Among several gasification and melting processes Daewoo-Thermoselect gasification and melting system is the representative process which can transfer waste to resources such as sin-gas, molten slag, metal hydroxide, mixed salt and sulfur through the process of compaction, degasification, gasification and melting.

  • PDF

Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water

  • Rashed, M. Nageeb;Gad, A.A.;AbdEldaiem, A.M.
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.53-71
    • /
    • 2018
  • Waste glass disposal causes environmental problems in the cities. To find a suitable green environmental solution for this problem low cost adsorbent in this study was prepared from waste glass. An effective new green adsorbent was synthesized by hydrothermal treatment of waste glass (WG), followed by acidic activation of its surface by HCl (WGP). The prepared adsorbent was characterized by scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), and BET surface measurement. The developed adsorbent was used for the removal of heavy metals (Cd, Cu, Fe, Pb and Zn) from well water. Batch experiments were conducted to test the ability of the prepared adsorbent for the removal of Cd, Cu, Fe, Pb and Zn from well water. The experiments of the heavy metals adsorption by adsorbent (WGP) were performed at different metal ion concentrations, solution pH, adsorbent dosage and contact time. The Langmuir and Freundlich adsorption isotherms and kinetic models were used to verify the adsorption performance. The results indicated high removal efficiencies (99-100%) for all the studied heavy metals at pH 7 at constant contact time of 2 h. The data obtained from adsorption isotherms of metal ions at different time fitted well to linear form of the Langmuir sorption equation, and pseudo-second-order kinetic model. Application of the resulted conditions on well water demonstrated that the modified waste glass adsorbent successfully adsorbed heavy metals (Cd, Cu, Fe, Pb and Zn) from well water.

Decomposition Mechanism of Waste Hard Metals using by ZDP (Zinc Decomposition Process) (ZDP(Zinc Decomposition Process)를 이용한 폐 초경합금의 분해기구)

  • Pee, Jae-Hwan;Kim, Yoo-Jin;Sung, Nam-Eui;Hwang, Kwang-Taek;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.173-177
    • /
    • 2011
  • Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc valatilization pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 h at $650^{\circ}C$, which 100 % decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of ${\gamma}-{\beta}1$ phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at $1000^{\circ}C$.

Removal Characteristics of Heavy Metal by Na-P1 Zeolite Synthesized from Coal Fly Ash

  • Mingyu Lee;Don
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.167-175
    • /
    • 1992
  • This study was conducted for an efficient utilization of waste fly ash obtained from the power plant. Fly ash was used for synthesizing zeolite. Na-Pl zeolite could be easily synthesized from waste fly ash and showed the potential to remove heavy metal ions. The synthetic zeolite showed good adsorption property for heavy metal much better than raw fly ash and natural zeolites. Na-Pl exhibited the high adsorption efficiency with a maximum value of 260 Pb mg/g and strong affinity for Pb2+ ion. The metal ion selectivity of Na-Pl was determined in a decreasing order : $Pb^{2+}$>$Cd^{2+}$>$Cu^{2+}$+>$Zn^{2+}$>$Fe^{3+}$

  • PDF

Removal Characteristics of Heavy Metal by Na-P1 Zeolite Synthesized from Coal Fly Ash

  • Lee Mingyu;Lee Donghwan;Oh Yunghee;Ahn Byoungjoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.167-175
    • /
    • 1997
  • This study was conducted for an efficient utilization of waste fly ash obtained from the power plant. Fly ash was used for synthesizing zeolite. Na-P1 zeolite could be easily synthesized from waste fly ash and showed the potential to remove heavy metal ions. The synthetic zeolite showed good adsorption property for heavy metal much better than raw fly ash and natural zeolites. Na-P1 exhibited the high adsorption efficiency with a maximum value of 260 Pb mg/g and strong affinity for $Pb^{2+}$ ion. The metal ion selectivity of Na-P1 was determined in a decreasing order : $Pb^{2+}>Cd^{2+}>Cu^{2+}>Zn^{2+}>Fe^{3+}$.

  • PDF

Effects of Soil Neutralizing Treatments on Soil Characteristics and Growth of Aster koraiensis in the Acid Soil of Abandoned Metal Mine

  • Jung, Mun Ho;Lee, Sang Hwan;Kim, Yoon Su;Park, Mi Jeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.287-292
    • /
    • 2016
  • The objectives of this study were to investigate the effects of soil neutralizing treatments on soil characteristics and growth of Aster koraiensis in the acid soil of abandoned metal mine for selection of proper neutralizer. The most effective neutralizers were acid mine drainage sludge, waste lime + oyster and compost. Those neutralizing treatments showed promoting growth of Aster koraiensis. According to this study, it is applicable of acid mine drainage sludge, waste lime + oyster and compost to neutralize acid soil for rehabilitation in abandoned metal mine. However, follow-up study is necessary to calculate proper ratio of each neutralizer.

Removal Efficiency of the Pollutants from Piggery Wastes with Activated Carbon Treated with Metal and Their Pilot Scale Design

  • Oh, Won-Chun;Park, Chong-Sung;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.180-187
    • /
    • 2006
  • The treatment of piggery wastes was carried out at pilot scale using a multilayered metal-activated carbon system followed by carbon bed filtration. The physicochemical properties were obtained from treated samples with aqueous solutions containing metallic ions such as $Ag^+$, $Cu^{2+}$, $Na^+$, $K^+$ and $Mn^{2+}$, which main obsevations are subjected to inspect surface properties, color removal properties by Uv/Vis and EDX. Multilayered metal-activated carbons were contacted with waste water to investigation of the simultaneous catalytic effect for the COD, BOD, T-N and T-P removal. The removal results for the piggery waste using multilayered metal-activated carbon bed was achieved the satisfactory removal performance under permitted values of Ministry of Environment of Korea. The high efficiency of the multilayered metal-activated carbon bed was determined by the performance of this material for trapping, catalytic effect and adsorption of organic solid particles.

  • PDF

Pollution of Heavy Metals in Paddy Soils Around the Downstream Area of Abandoned Metal Mine and Efficiency of Reversed Soil Method as Its Remediation (폐금속광산 하부 농경지 토양의 중금속오염과 그 복구방법으로서 반전객토의 효율성)

  • Na, Choon-Ki;Lee, Mu-Seong;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.123-135
    • /
    • 1997
  • In order to investigate the dispersion patterns and contamination level of heavy metals in the soil-ecosystem and to evaluate the efficiency of soil remediation by reversed soil method, soils and plants were collected from the Dongjin Au-Ag-Cu mine area and analysed for heavy metals. The dispersion patterns of heavy metals in soils and plants show that heavy metal pollutions caused by waste rump around Dongjin mine are mainly found in the vicinity of the waste rump and in the southward slanting of mine. Toxic metallic pollutants from the mine influence heavy metal contents in paddy soils in downstream area, and may be a potential sources of heavy metal pollution on crop plants. Soil samples collected from the remediated rice farming field by reversed method show similar levels of heavy metal content to those from the polluted rice farming field, but topsoil enrichment of heavy metals are not found. Heavy metal contents of the rice plants collected from remediated rice farming field are significantly lower than those from polluted rice farming field, and it suggests that the reversed soil method is effective for the reduction of bioavailability of heavy metals.

  • PDF