• Title/Summary/Keyword: metal stress

Search Result 1,549, Processing Time 0.034 seconds

Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material (현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향)

  • Jung, Jae-Wook;Park, Keyoung-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.353-358
    • /
    • 2004
  • We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{circ}C$, $-60^{circ}C$, $-80^{circ}C$, and $-100^{circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. And there is a difference between shot peened specimen and unpeened specimen. The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. Fatigue crack growth rate of shot peened metal was lower than that of unpeened metal. The compressive residual stress made an impact on tension and compression of the plasticity deformation in fatigue crack plasticity zone. That is. the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation.

  • PDF

Study on the Wrinkling Prediction in Sheet Metal Stamping Processes (박판 스탬핑 공정의 주름발생 예측에 관한 연구)

  • 황보원;금영탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.131-142
    • /
    • 2001
  • A wrinkling is the instability phenomenon influenced by material properties, shape geometry, forming conditions, stress state, etc. The wrinkling is considered as a critical defect in appearance of product. Many wrinkling prediction methods using thickness strain distribution and farming analysis have been proposed. The wrinkling, however, is not easily predicted precisely by these methods. In this study, the region in the biaxial plane stress state is modeled with a rectangular plate introducing the effective dimension, and critical stress values for the wrinkling are calculated. Prediction index for the wrinkling is then evaluated by normalizing the actual stress with respect to the critical stress. In order to show the validity and efficiency of the method proposed, the wrinkling prediction for a squared sheet in the uniaxial tensile stress and auto-body front finder panel is performed.

  • PDF

Fracture Criterion and Fracture Behavior in Si3N4/Metal Bonded Joints (질화규소/금속 접합재에 대한 파괴기준 및 파괴거동)

  • 김기성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.233-238
    • /
    • 1998
  • Recently, the uses of ceramic/metal bonded joints for structural materials have increased in various engineering fields such as automobiles, heat engines, and so on. A method of strength evaluation focussing on fracture criterion of mixed was investigated in Si3N4/metal bonded joint. Also, Fracture toughness tests of Si3N4/metal bonded joints with an interface crack were carried out and the stress intensity factors of these joints were analyzed by boundary element method. From the results, the fracture criterion and method of strength evaluation by the fracture toughness were proposed in Si3N4/metal bonded joints

  • PDF

Analysis of Residual Stress of Ceramic/Metal Joint (세라믹/금속 접합재의 잔류응력 해석)

  • Park, Young-Chul;Hue, Sun-Chul;Kim, Kwang-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.1
    • /
    • pp.7-15
    • /
    • 1994
  • The two-dimensional elastoplastic analysis was peformed to reveal a detail residual stress distribution of ceramic/metal joint specimen using finite element method and X-ray method. The highest tensile residual stress, ${\sigma}_x$ perpendicular to the interface appeared at the edge of the ceramic near the interface. In the vicinity of the interface, the high stress concentration occurs and residual stress distributes three-dimensionally. Therefore, the measured stress distribution differed remarkably from the result of the two-dimensional finite-element analysis. Especially at the center of the specimen near the interface, the residual stress, ox obtained from the finite element analysis was compressive, whereas X-ray measurement yielded tensile ${\sigma}_x$. Therefore, it is also attempted to investigate the finite element model for the prediction of residual stress ${\sigma}_x$ distributed nearly the interface of joint.

  • PDF

Analysis of SCC Behavior of Alloy 600 Nozzle Penetration According to Residual Stress Induced by Dissimilar Metal Welding (Alloy 600 노즐관통부의 이종금속용접 잔류응력에 따른 응력부식균열 거동 분석)

  • Kim, Sung-Woo;Kim, Hong-Pyo;Kim, Dong-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.34-41
    • /
    • 2010
  • This work is concerned with the analysis of stress corrosion cracking(SCC) behavior of Alloy 600 nozzle penetration mock-up according to a residual stress induced by a dissimilar metal welding(DMW) in a nuclear reactor pressure vessel. The effects of the dimension and materials of the nozzle penetration on the deformation and the residual stress induced by DMW were investigated using a finite element analysis(FEA). The inner diameter(ID) change of the nozzle by DMW and its dependance on the design variables, calculated by FEA, were well consistent with those measured from the mock-up. Accelerated SCC tests were performed for three mock-ups with different wall thicknesses in a highly acidic solution to investigate mainly the effect of the residual stress on the SCC behavior of Alloy 600 nozzle. From a destructive examination of the mock-up after the tests, the SCC behavior of the nozzle was fairly related with the residual stress induced by DMW : axial cracks were found in the ID surface of the nozzle within the J-weld region where the highest tensile hoop stress was predicted by FEA, while circumferential cracks were observed beyond both J-weld root and toe where the highest tensile axial stress was expected.

  • PDF

Investigation of bias illumination stress in solution-processed bilayer metal-oxide thin-film transistors

  • Lee, Woobin;Eom, Jimi;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.302.1-302.1
    • /
    • 2016
  • Solution-processed amorphous metal-oxide thin-film transistors (TFTs) are considered as promising candidates for the upcoming transparent and flexible electronics due to their transparent property, good performance uniformity and possibility to fabricate at a low-temperature. In addition, solution processing metal oxide TFTs may allow non-vacuum fabrication of flexible electronic which can be more utilizable for easy and low-cost fabrication. Recently, for high-mobility oxide TFTs, multi-layered oxide channel devices have been introduced such as superlattice channel structure and heterojunction structure. However, only a few studies have been mentioned on the bias illumination stress in the multi- layered oxide TFTs. Therefore, in this research, we investigated the effects of bias illumination stress in solution-processed bilayer oxide TFTs which are fabricated by the deep ultraviolet photochemical activation process. For studying the electrical and stability characteristics, we implemented positive bias stress (PBS) and negative bias illumination stress (NBIS). Also, we studied the electrical properties such as field-effect mobility, threshold voltage ($V_T$) and subthreshold slop (SS) to understand effects of the bilayer channel structure.

  • PDF

The effect of ultrasonic nano crystal surface modification for mitigation of the residual stress after weld inlay on the alloy 82/182 dissimilar metal welds of reactor vessel in/outlet nozzles (원자로 입출구 노즐 Alloy 82/182 이종금속 용접부 Weld Inlay 적용 후 초음파나노표면개질이 잔류응력 완화에 미치는 영향)

  • Cho, Hong Seok;Park, Ik Keun;Jung, Kwang Woon
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.40-46
    • /
    • 2015
  • This study was performed to investigate the effect of ultrasonic nano crystal surface modification (UNSM) on residual stress mitigation after Weld Inlay repair for butt dissimilar metal weld with Alloy 82/182 in reactor vessel In/Outlet nozzle. As-welded and Weld Inlay specimens were made in accordance with design standard of ASME Code Case N-766, and two planes of their weld specimens were peened by the optimum UNSM process condition. Peening characteristics for weld specimens after UNSM treatment were evaluated by surface roughness and Vickers hardness test. And, residual stress for weld specimens developed from before and after UNSM treatment was measured and evaluated by instrumented indentation technique. Consequently, it was revealed that the mitigation of residual stress in weld metal after Weld Inlay repair of reactor vessel In/Outlet nozzle could be possible through UNSM treatment.

Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments

  • Chen, Chun-Sheng;Liu, Fwu-Hsing;Chen, Wei-Ren
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.251-261
    • /
    • 2017
  • In this paper, thermal effect on the vibration and stability of initially stressed sandwich plates with functionally graded material (FGM) face sheets is analyzed. Material properties of FGM face sheet are graded continuously in the thickness direction. The variation of FGM properties assumes a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of arbitrarily initially-stressed sandwich plates including the effects of transverse shear deformation and rotary inertia are derived. The initial stress is taken to be a combination of a uniaxial extensional stress and a pure bending stress in the examples. The eigenvalue problems are formed to study the vibration and buckling characteristics of simple supported initially stressed FGM/metal/FGM plates. The effects of volume fraction index, temperature rise, initial stress and layer thickness of metal on the natural frequencies and buckling loads are investigated. The results reveal that the volume fraction index, initial stresses and layer thickness of metal have significant influence on the vibration and stability of sandwich plates with FGM face sheets.

Numerical Prediction of Temperature-Dependent Flow Stress on Fiber Metal Laminate using Artificial Neural Network (인공신경망을 사용한 섬유금속적층판의 온도에 따른 유동응력에 대한 수치해석적 예측)

  • Park, E.T.;Lee, Y.H.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.227-235
    • /
    • 2018
  • The flow stresses have been identified prior to a numerical simulation for predicting a deformation of materials using the experimental or analytical analysis. Recently, the flow stress models considering the temperature effect have been developed to reduce the number of experiments. Artificial neural network can provide a simple procedure for solving a problem from the analytical models. The objective of this paper is the prediction of flow stress on the fiber metal laminate using the artificial neural network. First, the training data were obtained by conducting the uniaxial tensile tests at the various temperature conditions. After, the artificial neural network has been trained by Levenberg-Marquardt method. The numerical results of the trained model were compared with the analytical models predicted at the previous study. It is noted that the artificial neural network can predict flow stress effectively as compared with the previously-proposed analytical models.