• Title/Summary/Keyword: metal powder injection molding

Search Result 79, Processing Time 0.023 seconds

Design Regression for Identification of Optimal Components for Metal Powder Injection Molding

  • German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.211-212
    • /
    • 2006
  • Production components fabricated by metal powder injection molding are analyzed for features to identify the design window for this powder technology. This reverse approach lets the designer see where PIM has a high probability to succeed. The findings show that the most suitable components tend to be less than 25 mm in size and less than 10 g in mass, are slender, and have high complexity.

  • PDF

Net-shape Manufacturing of Micro Porous Metal Components by Powder Injection Molding

  • Nishiyabu, Kazuaki;Matsuzaki, Satoru;Tanaka, Shigeo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.93-94
    • /
    • 2006
  • A novel production method for porous metal components has been developed by applying powder space holder (PSH) method to metal powder injection molding (MIM) process. The PSH-MIM method has an industrial competitive advantage that is capable of net-shape manufacturing the micro-sized porous metal products with complicated shapes and controlled porosity and pore size. In this study, the small impeller with homogeneous micro-porous structure was manufactured by the PSH-MIM method. The effects of combinations in size and fraction of PMMA particle on dimensional tolerance and variation of sintered porous specimens were investigated. It was concluded that the PSH-MIM method could manufacture commercially microporous metal components with high dimensional accuracy.

  • PDF

Gas Nitriding Mechanism in Titanium Powder Injection Molded Products

  • Osada, Toshiko;Miura, Hideshi;Yamagami, Takanobu;Nishiyabu, Kazuaki;Tanaka, Shigeo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.773-774
    • /
    • 2006
  • Gas surface treatment is considered to be effective for titanium because of its high reactivity. In this study, we investigated the gas nitriding mechanism in titanium sintered parts produced by metal powder injection molding (MIM) process. The microstructure and nitrogen content of sintered MIM parts were greatly affected by nitriding conditions. Nitriding process strongly depended on the specimen size, for example, the size of micro metal injection molding (${\mu}-MIM$) product is so small and the specific surface is so large that the mechanical and functional properties can be modified by nitriding.

  • PDF

An Experimental Study on Rheological Characteristics of Metal Injection Molding by Feedstock Material (Feedstock 종류에 따른 금속분말사출성형 유동특성 분석을 위한 실험적 연구)

  • Jung, W.C.;Heo, Y.M.;Shin, K.H.;Yoon, G.S.;Chang, S.H.;Lee, J.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.57-61
    • /
    • 2009
  • In recently industry, with the miniaturization and high-precision of machine part, the development of mold manufacturing technology for mass production is accompanied by the development of new industrial field such as IT, NT and BT. The metal injection molding(MIM) process combines the well-known thermoplastic injection and powder metallurgy technologies to manufacture small parts for IT, NT, BT industrial. In this study, the bar type MIM mold with a 800um thickness is made for influence of feedstock material and injection parameter through an experiment.

  • PDF

Micro Metal Powder Injection Molding in the W-Cu System (W-Cu의 마이크로 금속분말사출성형)

  • 김순욱;양주환;박순섭;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.267-272
    • /
    • 2002
  • The production of micro components is one of the leading technologies in the fields of information and communiation, medical and biotechnology, and micro sensor and micro actuator system. Microfabrication (micromachining) techniques such as X-ray lithography, electroforming, micromolding and excimer laser ablation are used for the production of micro components out of silicon, polymer and a limited number of pure metals or binary alloys. However, since the first development of microfabrication technologies there have been demands for the cost-effective replication in large scale series as well as the extended range of available material. One such promising process is micro powder injection molding (PIM), which inherits the advantages of the conventional PIM technology, such as low production cost, shape complexity, applicability to many materials, applicability to many materials, and good tolerance. This paper reports on a fundamental investigation of the application of W-Cu powder to micro metal injection molding (MIM), especially in view of achieving a good filling and a safe removal of a micro mold conducted in the experiment. It is absolutely legitimate and meaningful, at the present state of the technique, to continue developing the micro MIM towards production processes for micro components.

Thermal Dissipation Performance of a Heat Sink/Vapor Chamber Prepared by Metal Injection Molding Process

  • Chena, Bor-Yuan;Hwang, Kuen-Shyang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.767-768
    • /
    • 2006
  • In this study, copper vapor chambers with built-in cooling fins, which eliminated the soldered or brazed joints in the conventional vapor chamber, were fabricated using the metal injection molding process. The results show that with optimized molding parameters, fins with an aspect ratio up to 18 could be produced. After sintering, the densities of the fin and chamber reached 96%. With only 32 cooling fins and a small fan installed, the thermal resistance of the heat sink was $1.156^{\circ}C/W$, and the power dissipation was 40W when the junction temperature was $70^{\circ}C$. When copper powder was sintered onto the chamber to make a vapor chamber, the thermal resistance decreased to $1.046^{\circ}C/W$.

  • PDF

A Study on the Injection Molding Analysis of the Metal Powder Material (금속분말재료의 사출 성형해석에 관한 연구)

  • Ro, Chan-Seung;Park, Jong-Nam;Jung, Han-Byul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.42-47
    • /
    • 2017
  • In this study,we conducted an injection molding analysis of metal powder materials for the development of flanges, which are necessary adapters for optical communication. The metal powder injection molding process is a technique for producing an injection molded article having a complicated shape by mixing ceramic or stainless powder and binders. It is used to produce products which require complex processing technology or for which the productivity is low. The purpose of this study is to minimize the manufacturing processing of products which are manufactured through existing mechanical processing procedures. For the injection molding analysis, we mixed stainless STS316 metal powder with binders at a ratio of 6 to 4 to make molding materials consisting of granular pellets. Then, three-dimensional modeling and meshing were carried out to obtain the optimal injection molding analysis conditions(molding temperature, melting temperature, injection time, injection temperature, injection pressure, packing time and cooling time). As a result of the analysis, it was discovered that the inlet became available 13.29 seconds after the first injection. Also, as the flowing and packing in the melt through the sprue, runner and gate were stable, it is expected that good molds can be manufactured.

CAE Analysis of Powder Injection Molding Process for Dental Scaler Mold (치과용 스케일러 금형의 분말사출성형 CAE 해석설계)

  • Ko Y. B.;Park H. P.;Chung S. T.;Rhee B. O.;Hwang C. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.570-576
    • /
    • 2005
  • Powder Injection Molding(PIM) has recently been recognized as an advanced manufacturing technology for low-cost mass production of metal or ceramic parts of complicated geometry With this regards, design technology of dental scaler tip PIM mold, which has complex shape and small core pin (diameter=0.6mm), with the help of computer-aided analysis of powder injection molding process was developed. Computer-aided analysis for dental scaler tip mold was implemented by finite element method with non-Newtonian fluid, modified Cross model viscosity, PvT data of powder/binder mixture. Compter-aided analysis results, such as filling pattern, weldline formation, air vent position prediction were compared with experimental result, and eventually have been shown good agreement. The core pin (diameter=0.6mm) deflection analysis of dental scaler tip PIM mold during PIM filling process was also investigated before mold fabrication.

Fabrication of W-10wt.%Cu Powder for the Application of Metal Injection Molding (금속사출성형을 위한 W-10wt.%Cu 분말의 제조에 관한 연구)

  • 김순욱;손찬현;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.8 no.4
    • /
    • pp.245-252
    • /
    • 2001
  • Recent remarkable progress in the semiconductor industry has promoted smaller size of semiconductor chips and increased amounts of heat generation. So, the demand for a substrate material to meet both the characteristics of thermal expansion coefficient and heat radiation has been on the increase. Under such conditions, tungsten(W)-copper(Cu) has been proposed as materials to meet both of the above characteristics. In the present study, the W-10wt.%Cu powders were synthesised by the mixing and hydrogen reduction of the starting mixture materials such as W-Cu, $W-CuCl_2$and $WO_3-CuCl_2$ in order to obtain the full densification. The W-10wt.%Cu produced by hydrogen reduction showed the higher interparticle friction than the simple mixed W-10wt%Cu because of the W agglomerates. In the dilatometric analysis the W-10wt.%Cu prepared from the $W-CuCl_2$was largely shrank by heating up $1400^{\circ}C$ at the constant heating rate of $5^{\circ}C$/min. The possibility of application of metal injection molding (MIM) was also investigated for mass production of the complex shaped W-Cu parts in semiconductor devices. The relationship between the temperature of molding die and the pressure of injection molding was analyzed and the heating up stage of 120-$290^{\circ}C$ in the debinding process was controlled for the most suitable MIM condition.

  • PDF