• Title/Summary/Keyword: metal powder

Search Result 1,500, Processing Time 0.028 seconds

Review on Characterization Method and Recent Research Trend about Metal Powder for Powder Bed Fusion (PBF) Process (금속 Powder Bed Fusion(PBF) 공정용 분말의 특성평가 방법 및 관련 연구 동향)

  • Lee, Bin;Kim, Dae-Kyeom;Kim, Young Il;Kim, Do Hoon;Son, Yong;Park, Kyoung-Tae;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.509-519
    • /
    • 2020
  • A well-established characterization method is required in powder bed fusion (PBF) metal additive manufacturing, where metal powder is used. The characterization methods from the traditional powder metallurgy process are still being used. However, it is necessary to develop advanced methods of property evaluation with the advances in additive manufacturing technology. In this article, the characterization methods of powders for metal PBF are reviewed, and the recent research trends are introduced. Standardization status and specifications for metal powder for the PBF process which published by the ISO, ASTM, and MPIF are also covered. The establishment of powder characterization methods are expected to contribute to the metal powder industry and the advancement of additive manufacturing technology through the creation of related databases.

Net-shape Manufacturing of Micro Porous Metal Components by Powder Injection Molding

  • Nishiyabu, Kazuaki;Matsuzaki, Satoru;Tanaka, Shigeo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.93-94
    • /
    • 2006
  • A novel production method for porous metal components has been developed by applying powder space holder (PSH) method to metal powder injection molding (MIM) process. The PSH-MIM method has an industrial competitive advantage that is capable of net-shape manufacturing the micro-sized porous metal products with complicated shapes and controlled porosity and pore size. In this study, the small impeller with homogeneous micro-porous structure was manufactured by the PSH-MIM method. The effects of combinations in size and fraction of PMMA particle on dimensional tolerance and variation of sintered porous specimens were investigated. It was concluded that the PSH-MIM method could manufacture commercially microporous metal components with high dimensional accuracy.

  • PDF

HIGH TEMPERATURE RANDOM STACK CREEP PROPERTY OF Ni-Cr-Al BASED POWDER POROUS METAL MANUFACTURED WITH POWDER SINTERING PROCESS

  • TAE-HOON KANG;KYU-SIK KIM;MAN-HO PARK;KEE-AHN LEE
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.513-518
    • /
    • 2019
  • Recently, attempts have been made to use porous metal as catalysts in a reactor for the hydrogen manufacturing process using steam methane reforming (SMR). This study manufactured Ni-Cr-Al based powder porous metal, stacked cubic form porous blocks, and investigated high temperature random stack creep property. To establish an environment similar to the actual situation, a random stack jig with a 1-inch diameter and height of 75 mm was used. The porous metal used for this study had an average pore size of ~1161 ㎛ by rolling direction. The relative density of the powder porous metal was measured as 6.72%. A compression test performed at 1073K identified that the powder porous metal had high temperature (800℃) compressive strength of 0.76 MPa. A 800℃ random stack creep test at 0.38 MPa measured a steady-state creep rate of 8.58×10-10 s-1, confirming outstanding high temperature creep properties. Compared to a single cubic powder porous metal with an identical stress ratio, this is a 1,000-times lower (better) steady-state creep rate. Based on the findings above, the reason of difference in creep properties between a single creep test and random stack creep test was discussed.

Relationship between Hardness and Relative Ddensity in Sintered Metal Powder Compacts (금속분발소결체의 경도와 상대밀도 관계)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.168-174
    • /
    • 1998
  • In the present study, a method for measuring the relative density by the hardness measurement was proposed for sintered metal powder compacts. It is based on the indentation force equation, by which the relative density is related with the hardness, that was obtained by the finite element analysis of rigid-ball indentation on sintered metal powder compacts. For verifying the method, it was applied to prediction of density distributions in sintered and sintered-and-forged Fe-0.5%C-2%Cu powder compacts.

  • PDF

A Study on Pore Properties of SUS316L Powder Porous Metal Fabricated by Electrostatic Powder Coating Process (정전분체코팅 공정으로 제조된 SUS316L 분말 다공체의 기공 특성에 관한 연구)

  • Lee, Min-Jeong;Yi, Yu-Jeong;Kim, Hyeon-Ju;Park, Manho;Kim, Byoung-Kee;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.415-419
    • /
    • 2018
  • Porous metals demonstrate not only excessively low densities, but also novel physical, thermal, mechanical, electrical, and acoustic properties. Thus, porous metals exhibit exceptional performance, which are useful for diesel particulate filters, heat exchangers, and noise absorbers. In this study, SUS316L foam with 90% porosity and $3,000{\mu}m$ pore size is successfully manufactured using the electrostatic powder coating (ESPC) process. The mean size of SUS316L powders is approximately $12.33{\mu}m$. The pore properties are evaluated using SEM and Archimedes. As the quantity of powder coating increases, pore size decreases from 2,881 to $1,356{\mu}m$. Moreover, the strut thickness and apparent density increase from 423.7 to $898.3{\mu}m$ and from 0.278 to $0.840g/cm^3$, respectively. It demonstrates that pore properties of SUS316L powder porous metal are controllable by template type and quantity of powder coating.

A Study on the Characteristics of Laser Deposition Surface and Cross-section for Metal Powder (금속 분말의 레이저 적층 시 표면 및 단면 특성에 관한 연구)

  • Hwang, Jun-Ho;Shin, Seong-Seon;Jung, Gu-In;Kim, Sung-Wook;Kim, Hyun-Deok
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.17-22
    • /
    • 2016
  • In this study, we compared the physical and chemical properties evaluation for each size in the SUS316L metal powder produced by water atomization and gas atomization. and we analyzed the experimental data in order to find the basis of a suitable metal powder (SUS316L) for DED (Direct Energy Deposition) processing. Also it evaluated the properties of each layered surface and cross section according to the number of deposition and deposition speed. In the result of optical microscopy measurements, the metal powder by water atomization was the crack generated between the deposition layer, the deposition layer was poor quality. However, metal powder by gas atomization was obtained a relatively good deposition results than metal powder by water atomization.

Production of Ultra-fine Metal Powder with Gas Atomization Processes

  • Wang, M. R.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.59-68
    • /
    • 2006
  • Experimental results of the metal powder production with internal mixing, internal impinging and the atomizer coupled with substrate design are presented in this paper. In a test with internal mixing atomizer, mean powder size was decreased from $37{\mu}m\;to\;23{\mu}m$ for Pb65Sn35 alloy as the gas-to-melt mass ratio was increased from 0.04 to 0.17. The particle size further reduces to $16.01{\mu}m$ as the orifice area is increased to $24mm^2$. The micrograph of the metal powder indicates that very fine and spherical metal powder has been produced by this process. In a test program using the internal impinging atomizers, the mean particle size of the metal powder was decreased from $22{\mu}m\;to\;12{\mu}m$ as the gas-to-melt-mass ratio increased from 0.05 to 0.22. The test results of an atomizer coupled with a substrate indicates that the deposition rate of the molten spray on the substrate is controlled by the diameter of the substrate, the height of the substrate ring and the distance of the substrate from the outlet of the atomizer. This in rum determines the powder production rate of the spraying processes. Experimental results indicate that the deposition rate of the spray forming material decreases as the distance between the substrate and the atomizer increases. For example, the deposition rate decreases from 48% to 19% as the substrate is placed at a distance from 20cm to 40cm. On the other hand, the metal powder production rate and its particle size increases as the subsrate is placed far away from the atomizer. The production of metal powder with mean particle size as low as $3.13{\mu}m$ has been achieved, a level which is not achievable by the conventional gas atomization processes.

  • PDF

Study for Applicability of Polymer and Polymer Coated Metal Materials within PBF System (PBF 시스템에서 고분자 및 금속 소재 적용성 연구)

  • Kim, Dong Soo;Bae, Sungwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.765-771
    • /
    • 2015
  • In an Additive Manufacturing (AM) system emplying the Powder Bed Fusion (PBF) system, polyamide-12 powder is currently recognized as the general material used. The Polyamide-12 powder's properties include an average particle size of 58 $58{\mu}m$, a density of 0.59 g/cm3, and melting point of $184^{\circ}C$, and can also be to used coat materials for metal powder. For this reason, the sintering process is similar to the polymer powder and polymer coated metal powder process, except during the post-process. The polyamide-12 powder has some disadvantages such as its high cost and the fact that it can only be used for the provided equipment from the maker. Therefore, this study aims to perform the applicability of new material, polymer and polymer coated metal, to the PBF system.

Design Regression for Identification of Optimal Components for Metal Powder Injection Molding

  • German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.211-212
    • /
    • 2006
  • Production components fabricated by metal powder injection molding are analyzed for features to identify the design window for this powder technology. This reverse approach lets the designer see where PIM has a high probability to succeed. The findings show that the most suitable components tend to be less than 25 mm in size and less than 10 g in mass, are slender, and have high complexity.

  • PDF

Densification Behavior of Metal and Ceramic Powder under Cold Compaction

  • Lee, Sung-Chul;Kim, Ki-Tae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.179-180
    • /
    • 2006
  • Densification behavior of various metal and ceramic powder was investigated under cold compaction. The Cap model was proposed based on the parameters obtained from axial and radial deformation of sintered metal powder compacts under uniaxial compression and volumetric strain evolution. For ceramic powder, the parameters were obtained from deformation of green powder compacts under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powder under cold compaction.

  • PDF