• Title/Summary/Keyword: metal pipe

Search Result 318, Processing Time 0.031 seconds

High-Temperature Heat-Pipe Type Solar Thermal Receiver (고온용 히트파이프형 태양열 흡수기)

  • Boo, Joon-Hong;Jung, Eui-Guk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.668-671
    • /
    • 2007
  • A numerical study was conducted on a simplified model of a high-temperature solar receiver which incorporates liquid-metal heat pipe. The objective of this paper is to compare the isothermal characteristics of the heat pipe receiver with the conventional receiver utilizing convection of molten salt as heat carrier. The solar receiver was assumed to be subject to a concentration ratio between 50 and 1,000 to supply high-temperature heat to a stirling engine for electric power generation. For simplicity of the analysis, a cylindrical geometry was assumed and typical dimensions were used based on available literature. The heat pipe had a shape of double-walled cavity and the working fluid was a sodium. The analysis was performed assuming that the radiation heat flux on the inner walls of the receiver was uniform, since the focus of this study was laid on the comparison of the conventional type and heat pipe type receiver. The results showed that the heat pipe type exhibited superior performance when the operating temperature becomes higher. In addition, to explore the advantage of the heat pipe receiver, the channel shape and dimensions should be adjusted to increase the heat transfer area between the wall and the heat trnasfer medium.

  • PDF

Design on illumination of structures for lighthouse in Korea

  • Han, Ju-Seop;Yu, Yong-Su;Kim, Jong-Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1327-1332
    • /
    • 2014
  • This paper presents information about the examples of the design on Illumination of Structures(LED Light Pipe for lighthouse) in Korea. We have applied illumination by flood-lighting or facade-lighting in place of the 57 lighthouses (offshore structures) and 4 beacons. The ways of illumination of structures are using direct illumination with LED, halogen lamps and metal halide lamps, and indirect illumination with LED non-neon lamps. The illumination of structures helps a observer to identify the Aids to Navigation and w aterway. The fabricated LED Light Pipe is a transparent acrylic round bar and easy to install. The Light Pipe is arranged in two rows of L ED (78ea). It can be connected in series. It has 4 colours(Red, Green, Yellow, White). We analyzed and the horizontal divergence angle of the LED light pipe is defined as the range with 50% of maximum luminous intensity. Also, we evaluated the conspicuity on the origin al lantern and LED Light pipe for lighthouse. The field experiment was conducted in 'Yeosuguhang lighthouse' in Yeosu-city (Korea). F rom the experimental results, it was confirmed that the fabricated LED Light Pipe is clearly distinguished.

A Study of Prevention of Pipe Scale with Cu-Zn Metal Fiber (Cu-Zn Metal Fiber를 이용한 배관 스케일 방지에 관한 연구)

  • Lee, Sang-Ho;Kim, Jong-Hwa;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.70-75
    • /
    • 2010
  • Scale generation in the inside of a pipe IS restricted by reduction and oxidation(REDOX) reaction of alloyed metal of Cu-Zn. To measure the scale generating rate in the 1.67 mm of inside diameter of stainless steel tube, 300 ppm of $CaCO_3$ solution is circulated in the REDOX reactor and stainless steel tube in the order. In the case of $CaCO_3$ solution treated by REDOX reactor, flowing is maintained without plugging in the stainless steel tube, and the concentration of Cu and Zn in the circulating solution showed less than 1 ppm, which is equal to that of untreated by REDOX reactor. The crystal type of $CaCO_3$ generated by crystalline nucleus of Cu or Zn, mostly showed aragonite type.

Operating condition optimization of liquid metal heat pipe using deep learning based genetic algorithm: Heat transfer performance

  • Ik Jae Jin;Dong Hun Lee;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2610-2624
    • /
    • 2024
  • Liquid metal heat pipes play a critical role in various high-temperature applications, with their optimization being pivotal to achieving optimal thermal performance. In this study, a deep learning based genetic algorithm is suggested to optimize the operating conditions of liquid metal heat pipes. The optimization performance was investigated in both single and multi-variable optimization schemes, considering the operating conditions of heat load, inclination angle, and filling ratio. The single-variable optimization indicated reasonable performance for various conditions, reinforcing the potential applicability of the optimization method across a broad spectrum of high-temperature industries. The multi-variable optimization revealed an almost congruent performance level to single-variable optimization, suggesting that the robustness of optimization method is not compromised with additional variables. Furthermore, the generalization performance of the optimization method was investigated by conducting an experimental investigation, proving a similar performance. This study underlines the potential of optimizing the operating condition of heat pipes, with significant consequences in sectors such as high temperature field, thereby offering a pathway to more efficient, cost-effective thermal solutions.

Study on the control technique for the heat transportation system using metal hydride (수소저장합금을 이용한 열수송시스템 제어기술 연구)

  • Sim, K.S.;Kim, J.W.;Kim, J.D.;Myung, K.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • The heat transportation from a complex of industry to a rural area needs more efficient method because the distance between them is usually more than 10km. Conventional heat transportation using steam or hot water via pipe line has limits in transportation distance (about 3~5 km) because of the heat loss and frictional loss in the pipe line. Metal hydride can absorb or discharge hydrogen through exothermic or endothermic reaction. After releasing hydrogen from metal hydride by means of the waste heat from industry, we can transport this hydrogen to urban area via pipe line. In urban areas, other metal alloy reacts with this hydrogen to form metal hydride and produces heat for heating. Cool heat is also obtained if it is possible to use metal hydride with low reaction temperature. Therefore, metal hydride can be used as a media for transportation and storage of heat. $MmNi_{4.5}Al_{0.5}Zr_{0.003}$, $LaNi_5$, $Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$, $MmNi_{4.7}Al_{0.1}Fe_{0.1}V_{0.1}$ alloys were selected for this purpose and the properties of those metal hydrides were discussed. The design and control techniques were proposed and discussed for this heat transportation system using metal hydride.

  • PDF

Corrosion Resistance of Zn and Cu Coated Steel Pipes as a Substitute for Cu Pipe in an Air Conditioner System

  • Shin, Jae-Gyeong;Park, Chan-Jin;Hong, Sung-Kil
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.40-43
    • /
    • 2009
  • We investigated the corrosion resistance of Zn and Cu coated steel pipes as a substitute for Cu pipe in an air-conditioner system. In addition, the galvanic corrosion tendency between two dissimilar metal parts was studied. The corrosion resistance of the Cu electroplated steel was similar to that of Cu, while the corrosion rate of the Zn electro- galvanized and the galvalume (Zn-55 % Al) coated steels was much higher and not suitable for Cu substitute in artificial sea water and acidic rain environments. Furthermore, the galvanic difference between Cu electroplated steel and Cu was so small that the Cu coated steel pipe can be used as a substitute for Cu pipe in an air-conditioner system.

Thin Steel Sheet Roll Forming and Load Analysis (박판강대의 롤성형 및 부하 분석)

  • 서정현
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.273-279
    • /
    • 1999
  • In this paper the stress and strain behaivor in near homogeneous isotropic matrix of metal like steel was studied roll forming of thin steel sheet for cylindrical pipe. Analytical results reveals a body which is on the area of square thickness along and perpendicular to the width of thin steel sheet is in the state of plane strain during roll forming. As a result construction of analytical method for calculating deformation load and stably deformed length along the width of strained steel sheet was established. Also loads applied during roll forming were analyzed using two typical thin steel sheet 12.3m thick steel sheet with 42.5kg /mm2 yield strength of pipe and 5.3mm thick steel sheet with 32.5kg/mm2 yield strength of pipe. Through this analysis applicability of the analytical method for deformation load during roll forming of cylindrical thin steel pipe was evaluated with a study of necessary production technology for roll forming and design technology for roll forming machine.

  • PDF

Fatigue Properties of the Small Diameter Branch Welded Pipe Joint with variation of Welding Procedures and Welding Shapes. (용접공정 및 용접형상 변화에 따른 소구경 분기배관 용접부의 피로특성)

  • 백종현;김철만;김우식
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.191-193
    • /
    • 2003
  • S-N fatigue tests were conducted to investigate the fatigue strength of the small diameter socket and butt welded joints of carbon steels. Experimental parameters were pipe diameter, throat depth, shape of socket welds and welding procedure. Filler metals used in SMAW and GTAW procedure were E9016-G with diameter of 4.0 mm and ER70S-G with diameter of 2.4 m. API 5L Gr.B pipes were adopted as a small diameter branch pipes. All socket fittings were machined from ASTM A105 carbon steel. Fatigue strength in socket weld joints increased with increasing pipe diameter, area of weld metal and weld leg length of pipe side.

  • PDF

Influence of Welding Shapes and Welding Procedures on Fatigue Strength of Small Diameter Branch Welded Pipe Joint (소구경 분기배관 용접부의 피로강도에 미치는 용접부 형상 및 용접공정의 영향)

  • Baek, Jong-Hyun;Kim, Cheol-Man;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1092-1097
    • /
    • 2003
  • S-N fatigue tests were conducted to investigate the fatigue strength of small diameter socket and butt welded joints made of carbon steels. Experimental parameters were pipe diameter, throat depth, shape of socket welds and welding procedure. Filler metals used in SMAW and GTAW procedure were E9016-G with diameter of 4.0 mm and ER70S-G with diameter of 2.4 mm. API 5L Gr.B pipes were adopted as a small diameter branch pipes. All socket fittings were machined from ASTM A105 carbon steel. Tensile strength was not affected by the welding procedure. Fatigue strength in socket weld joints increased with increasing pipe diameter, area of weld metal and weld leg length of pipe side.

  • PDF