• Title/Summary/Keyword: metal fiber

Search Result 788, Processing Time 0.029 seconds

Mechanical Properties of High Performance Concrete with Material for Lateral Confinement (횡구속재 변화에 따른 고성능 콘크리트의 역학적 특성)

  • Han, Cheon-Goo;Jung, Duk-Woo;Jin, En-Hao
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.110-116
    • /
    • 2003
  • Recently, as concrete structure becomes high rise and large scaled tendency, demands for high performance concrete such as high strength, high fluidity and high durability has been increased. Even though high performance concrete performs high strength, workability and durability, compared to with those of normal concrete, it is more brittle than normal concrete. Accordingly, this paper is intended to improve toughness and compressive strength through investigating the mechanical properties of the high performance concrete confined with metal lath, glass fiber and carbon fiber laterally in the case of 30% and 40% of W/B. According to the results, the compressive strength increases in order of metal lath, carbon fiber and glass fiber. Considering strain-stress curve with the kinds of material for lateral confinement, while brittleness failure occurs in plain concrete just after maximum load, it is improved in some degree in confined concrete due to increase of the strain by increase of toughness. Elastic modulus increases slightly in case of confined concrete, like the compressing strength.

Experimental Study on the Strengthening Method of RC Beam Using Ceramic Metal (세라믹메탈재를 적용한 RC보의 보강공법에 관한 실험적 연구)

  • Shim, Nak-Hoon;Park, Young-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.115-122
    • /
    • 2004
  • The objective of the present study is to understand the strengthening effects of reinforced concrete beam applied the reinforced plates, expended metal and carbon fiber grid with the ceramic metal. In the present study, the bending tests are performed to understand the increasing effects of stiffness and ductility for the strengthening RC beam. Also, the important purpose of the structural tests is to understand the adhesion performance of the ceramic metal. It is expected the present experimental observations as a valuable source in suggestion improved the strengthening method more than this method by analysis of the failure mode for the specimens.

Thermal residual stress behavior in fiber metal laminates (섬유금속적층판의 경화 시 발생하는 열 잔류응력에 관한 연구)

  • Kim, Se-Young;Choi, Won-Jong;Park, Sang-Yoon;Moon, Cho-Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.39-44
    • /
    • 2005
  • Due to mismatch of thermal expansion coefficients between aluminum sheet and glass/epoxy sheet, thermal residual stresses generally appear in the FML. These stresses will affect the yield and fatigue strength of the FML. The numerically determined residual stresses in the Fiber-Metal-Laminates(FML) have been compared to the residual stresses measured from the curvature and tensile test methods. These two experimental methods have been developed for assessing the influence of residual stress in FML. Post-stretching process has been applied to remove the thermal residual stress and reverse the stress distribution. After post-stretching process, the residual stress has been measured from experiments. The results obtained show that analytical and experimental data are well agreed. The thermal residual stress can be removed by post-stretching process and it will increase the yield strength of FML.

Study on Enhancement for Interfacial Energy Release Rate of Adhesive Layer in Fiber Metal Laminates using Taguchi Method (다구찌 기법을 적용한 섬유금속적층판 접착층의 에너지 해방률 강화에 대한 연구)

  • Kil, Min-Gyu;Park, Eu-Tteum;Song, Woo-Jin;Kang, Beom-Soo
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.249-255
    • /
    • 2016
  • The fiber metal laminates have been widely used at aerospace industry due to outstanding fatigue characteristic, corrosion resistance and impact resistance and so forth. The objective of this research is to establish the proper manufacturing variables for enhancing the interfacial energy release rate of fiber metal laminates using Taguchi method. The major variables of the manufacturing process are surface treatment, pre-specified temperature holding time and additional pressure. In order to determine the interfacial adhesive strength, the double cantilever beam and end-notched flexure tests were conducted. Afterward, Mode I and II energy release rates at various conditions were introduced signal-to-noise ratio with respect to each condition. Finally, the most efficient manufacturing variables are recognized using larger-the-better characteristic.

Evaluation of Delamination for Fiber Reinforced Metal Laminates Using a Pseudo Crack Model (가균열 모델을 이용한 섬유강화 금속적층재의 층간분리 평가법)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2004
  • If Fiber Reinforced Metal Laminates(FRMLs) were delaminated, the decrease of stiffness and fiber bridging effect would result in the sudden aggravation of fatigue characteristics. It was reported that the delamination of FRMLs resulted from the crack of metal layers and that it depended on the crack growth. While cracks were made in FRMLs containing a saw-cuts under fatigue loading, cracks could be produced or not in FRMLs with circular holes under the same condition. When the FRMLs with the circular holes produce not the crack but the delamination, it is not possible to analyze it by the conventional fracture parameters expressed as the function of the crack. And so, this research suggests a new analytical model of the delamination to make the comparison of the delamination behavior possible whenever the cracks occur or not. Therefore, a new analytical model called Pseudo Crack Model(PCM) was suggested to compare the delaminations whether cracks were made or not. The relationship between the crack energy consumption rate( $E_{crack}$) and the delamination energy consumption rate( $E_{del}$) was discussed and it was also known that the effect of $E_{del}$ was larger than that of $E_{crack}$.

Strengthening Mechanism of Hybrid Short Fiber/Particle Reinforced Metal Matrix Composites (섬유/입자 혼합 금속복합재료의 강화기구 해석)

  • 정성욱;이종해;정창규;송정일;한경섭
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.50-60
    • /
    • 2000
  • This paper presents an analytical method considering tensile strength enhancement in hybrid $Al_2O_3$ fiber/particle/aluminum composites(MMCs). The tensile strength and elastic modulus of the hybrid MMCs are even 20% higher than those of the fiber reinforced MMCs with same volume fraction of reinforcements. This phenomenon is explained by the cluster model which is newly proposed in this research, and the strengthening mechanisms by a cluster is analyzed using simple modified rule of mixtures. From the analysis, it is observed that cluster structure in hybrid MMCs increase the fiber efficiency factor for the tensile strength and the orientation factor for the elastic modulus. The present theory is then compared with experimental results which was performed using squeeze infiltrated hybrid MMCs made of hybrid $Al_2O_3$ short fiber/particle preform and AC8A alloy as base metal, and the agreement is found to be satisfactory.

  • PDF

Fiber Optic Temperature Sensor Based on the Thermal Expansion Effect of Fused Optical Fiber Coupler Fixed on a Al Support (알루미늄 지지대에 고정된 융착 광섬유 커플러의 열팽창을 이용한 온도 센서)

  • Kim, Kwang Taek
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.338-341
    • /
    • 2017
  • We have investigated a temperature sensor on a thermal expansion effect of a fused optical fiber coupler. Both side of the fused tapered region of the coupler were fixed on a metal support to induce the high thermal expansion effect. The sensor showed that the peak coupling wavelengths were shifted to shorted wavelength region with increased of environmental temperature. The sensitivity of the sensor was $0.12nm/^{\circ}C$.

Effects of Mixing Fiber Types on Electromagnetic Wave Shielding Effectiveness of Mortar (혼입섬유에 따른 모르타르의 전자파 차폐 효과)

  • Kim, Young-Jun;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.150-151
    • /
    • 2015
  • In this study, the electromagnetic shielding performance of mortar with different metal fiber, as part of the development of a electromagnetic shielding construction material, was measured according to KS C 0304. The results showed that the amorphous steel fibers can shield electromagnetic effectively than the oter conventional steel fibers. The superior performance of the amorphous steel fiber may be attributed its plate shape geometry.

  • PDF

Optimal Welding condition in Ultrasonic Welding of Ni steel sheet (Ni 박판의 초음파 용착시 최적용착 조건)

  • Seo, Jeong Seok;Park, Dong Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.47-52
    • /
    • 2010
  • Miniaturization and lightweight are increasingly the recent trend in the manufacture of electric appliances and machine parts. So technology of micro joining for joining materials is indispensable. This paper gives a description of an experimental study of the ultrasonic welding of metals. In ultrasonic metal welding, high frequency vibrations are combined with pressure to join two materials together quickly and securely, without producing significant amount of heat. Ultrasonic metal welder consists of Transducer, Booster, and Horn that are designed very accurately to get the natural frequencies and vibration mode. In this study, The horn was designed and analyzed the natural frequency by the modal analysis and harmonic analysis. And using a fiber optic sensor, we measured the amplitude and analyzed the Fast Fourier Transformed result. Using the horn, Ultrasonic metal welding between Ni sheet and Ni sheet of 0.1mm thickness was accomplished under the optimal conditions of static pressure 0.15MPa, vibration amplitude 45% and welding time of 0.28s. This result can be used for ultrasonic metal welding in manufacturing industry.

Characterization of Ductile Metal-FRP Laminated Composites for Strengthening of Structures: Part-II Tensile Behavior (사회기반설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-II휨 거동)

  • Park, Cheol-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the flexural fracture test with various experimental variables including the number, the angle and the combination of FRP laminates. From the aluminum-FRP composite tests no great increase in flexural strength and flexural toughness were observed. However, flexural toughness of steel-FRP laminate composite was increased so that its behavior can be considered in the retrofit design. In addition, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions.