• 제목/요약/키워드: metal cutting

검색결과 462건 처리시간 0.038초

다결정 다이아몬드 공구를 이용한 Al-Mg계 합금의 미소선삭가공특성에 관한 연구 (A Study on the Micro Turning Machinability of A1-Mg Alloy Using Polycrystalline Diamond Tool)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.122-130
    • /
    • 1996
  • In this study, machinability of some aluminum-magnesium alloy are experimentally investigated using polycrystalline diamond tool with turning, and evaluated some independent cutting variables affected micrometal cutting characteristics as cutting force, specific cutting resistance, shear angles. To know the effect of cutting parameters of single point diamond machining, experiments were performed to measure cutting forces for high speed turning of aluminum alloy 6061-T6, SM45C and FC20 with poly- crystalline diamond and coated cemented carbide tool. Independent cutting variables were changed to a variety of cutting speed, feed rate, rake angles, material properties of workpiece and tool. Futhermore. Some useful informations are obtained in this study can guide micro metal cutting of aluminum alloy with diamond tool.

  • PDF

선삭가공에서 절삭력을 이용한 공구마멸의 감지 (Detection of Tool Wear using Cutting Force Measurement in Turning)

  • 윤재웅;이권용;이수철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.68-75
    • /
    • 2000
  • The development of flexible automation in the manufacturing industry is concerned with production activities performed by unmanned machining system. A major topic relevant to metal-cutting operations is monitoring tool wear, which affects process efficiency and product quality, and implementing automatic tool replacements. In this paper, the measurement of the cutting force components has been found to provide a method for an in-process detection of tool wear. Cutting force components are divided into static and dynamic components in this paper, and the static components of cutting force have been used to detect flank wear. To eliminate the influence of variations in cutting conditions, tools, and workpiece materials, the force modeling is performed for various cutting conditions. The normalized force disparities are defined in this paper, and the relationships between normalized disparity and flank wear are established. Finally, Artificial neural network is used to learn these relationships and detect tool wear. According to the proposed method, the static force components could provide the effective means to detect flank wear for varying cutting conditions in turning operation.

  • PDF

환경친화적 기계가공을 위한 기계적$\cdot$열적측면에서의 절삭유제 사용효과에 관한 연구 (A Study on the Cutting Fluid Effectiveness in Mechanical and Thermal Terms Simultaneously for Environmentally Conscious Machining)

  • 모용구;황준;정의식
    • 한국정밀공학회지
    • /
    • 제17권7호
    • /
    • pp.90-97
    • /
    • 2000
  • This paper presents a methodology to analyze the cutting fluid effectiveness in mechanical and thermal terms simultaneously using finite element method and experimental work. Cutting fluid plays many roles in metal cutting process. Mechanically-thermally coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, it can be explained that the critical behavior of cutting fluids will be able to apply optimal environmentally conscious machining process.

  • PDF

MQL 선삭가공에서 절삭조건과 원통도의 상관관계 분석 (Correlation analysis between cutting conditions and cylindricity in MQL turning)

  • 신성우;황영국;이춘만
    • 한국기계가공학회지
    • /
    • 제8권3호
    • /
    • pp.74-81
    • /
    • 2009
  • At present, industries and researchers are looking for ways to reduce the use of lubricants because of ecological and economical reasons. Therefore, metal cutting is to move toward dry cutting or semi-dry cutting. One of the technologies is known as MQL machining. This paper presents an investigation into MQL machining with the objective of evaluating cylindricity and cooling effect for the turning process of SM45C. To reach this goal, cylindrical-outer-diameter turning experiments are carried out according to cutting conditions with fluid, MQL and dry machining methods. A cutting force, tool-shank temperature and cylindricity of workpiece are measured and analyzed. The correlation between cutting conditions and cylindricity are evaluated according to cooling lubricant environments.

  • PDF

A hybrid cutting technology using plasma and end mill for decommissioning of nuclear facilities

  • Choi, Min-Gyu;Lee, Dong-Hyun;Jeong, Sang-Min;Figuera-Michal, Darian;Seo, Jun-Ho
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.1145-1151
    • /
    • 2022
  • A hybrid cutting using both plasma and end mill was developed for safe and efficient dismantling of nuclear facilities. In this cutting method, a moving arc plasma heats up the workpiece before milling. Thermally softened part of the workpiece is then removed quickly and deeply with an end mill. For the cutting experiments, a three-axis numerical control (NC) milling machine was combined with a commercialized arc plasma torch and used to cut 25 mm thick stainless steel plates. Experimental results revealed that pre-heating by arc plasmas can improve the cutting volume per unit time higher than 40% by reducing the cutting load and increasing the cuttable depth when using an end mill without cutting fluids. These advantages of a hybrid cutting process are expected to contribute to quick and safe segmentations of metal structures with radioactively contaminated inner surfaces.

작업자의 작업성향상을 위한 작업설계시스템의 개발 (Development of Operation Planning System for Worker's Productivity)

  • 임석진;박병태;박면웅;백승렬;정석재
    • 한국안전학회지
    • /
    • 제22권6호
    • /
    • pp.74-80
    • /
    • 2007
  • In manufacturing industry, machining technology for metal cutting processes has been considered traditional and economic dimensions such as production cost, production time and quality of a final product. However, owing to governmental regulations and the change of owner's cognizance, the safety of the workers becomes important in those fields. In this paper, the operation planning system developed as a key component of CAPP(Computer Aided Process Planning) system is introduced for milling operations. The main issue in the system is to determine the cutting conditions in achieving a balanced consideration of productivity and worker's safety. For this reason, the system performs the modification process of standard cutting conditions to satisfy those requirements. Related to machining safety in metal cutting, representative and habitual mistakes that operators perform without considering carefully the characteristic of machine or work piece are described and then the detailed algorithm and functions of the developed system is introduced and discussed.

절삭부하 예측을 통한 NC코드 후처리시스템 (NC Code Post-Processor Considering Metal Removal Rate)

  • 이기우;노상도;신동목;한형상
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.116-123
    • /
    • 2000
  • This paper presents an NC code post-processor that adjusts feedrates to keep the variation of metal removal rate along the tool paths minimum. Metal removal rate is estimated by virtually machining the part, whose surface model is built from a series of NC codes defined in operation plan, with cutting-tool-assembly models, whose geometry are defined in a machining database. The NC code post-processor modifies the feedrates by the adjustment rules, which are based on the machining knowledge for effective machining. This paper illustrates a procedure fur grouping machining conditions and we also show how to determine an adjustment rule for a machining-condition group. An example part was machined and it shows that the variation of cutting force was dramatically reduced after applying the NC code post-processor. The NC code post-processor is expected to increase productivity while maintaining the quality of the machined part.

  • PDF

초경날식 절삭형 완패스정미기의 개발 (Development of One-Pass Rice Whitener with Cutting Blades of Hard Metal)

  • 정종훈
    • Journal of Biosystems Engineering
    • /
    • 제22권2호
    • /
    • pp.199-209
    • /
    • 1997
  • A one-pass rice whitener with hard metal blades was developed to solve the problems of the existing one-pass rice whitener. The developed one-pass rice whitener was tested and improved through various milling experiments. It showed high performance such as the capacity of 3.5 t/h, the energy consumption of $1.0 kWh/100kg$, milled rice recovery of 91.6%, broken rice rate of 2.2%, the crack rate of 1.9% at the 750 rpm of the roller shaft, compared with those other domestic and foreign one-pass rice whiteners. Especially, it could whiten broun rice of high moisture (16~l7%) with water sprayed at low internal pressure of less than $0.2 kg/cm^2$ and low temperature due to the characteristics of the cutting part composed of 24 hard metal blades. The developed one-pass rice whitener was industrilized and distributed to some rice processing complexs in one fourth price compared with that of imported one-pass rice whiteners.

  • PDF

지르코늄 코팅공구의 절삭특성 (Cutting Characteristics of the ZrN Coated Tool)

  • 설한욱;김주현
    • 한국공작기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.17-22
    • /
    • 2006
  • Zirconium is widely applied in industrial area. In this study, the exeperiments are performed to investigate the differences in cutting characteristics of zirconium coated material which deposited on cutting tool using physical vapor deposition(PVD). For comparison, TiN coated tool is used to compare with zirconium coated tool. Experimental results were compared for tool wear, surface roughness and cutting force. The tool wear of PVD coated bites is affected by the various cutting conditions. This new stuff 'zirconium coated tool' wears $33\%$ less and improves surface roughness $23\%$ more in various cutting conditions. Cutting force is analyzed by using various workpiece, and the research strongly confirms that 'zirconium' remains better condition than 'titanium'. As a result 'zirconium' coated tool can be performed far better than 'titanium' coated tool on metal cutting.

압축공기 토출방식 절삭칩 회수장치 설계 및 해석 (Design and Analysis of Cutting Chip Collecting Apparatus for 5 Head Router Machine)

  • 김현섭;이택민;김동수;최병오;김광영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1133-1136
    • /
    • 2004
  • The structures of airplane consist of sheet metal part, heavy machined part, and so on, which generate enormous amounts of cutting chip when these parts are machined. The cutting chip detoriorates the part quality and production efficiency. Therefore, cutting chip collecting apparatus is necessary for better quality and efficiency. In this study, blowing type cutting chip collecting apparatus was newly proposed and the concept design of the apparatus was examined through numerical analysis. Computations using the mass-averaged implicit 2D Navier-Stokes equations are applied to predict the nozzle flow field. The standard k-e turbulent model are employed to close the governing equations. Consequently, this study shows that the suggested blowing type cutting chip collecting apparatus can be alternative to existing expensive chip collecting apparatus.

  • PDF