• Title/Summary/Keyword: metal content

Search Result 1,488, Processing Time 0.031 seconds

Applicability of Electrical Conductivity Monitoring Technique for Soil-bentonite Barrier (흙-벤토나이트월에 대한 전기전도도 모니터링 기법의 적용성 평가)

  • Oh, Myoung-Hak;Yoo, Dong-Ju;Kim, Yong-Sung;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.47-55
    • /
    • 2007
  • In this study, applicability of electrical conductivity monitoring technique for containment barrier such as soil-bentonite wall was evaluated. Laboratory tests including permeability tests and column tests were performed to understand variations in electrical conductivity at different bentonite contents, hydraulic conductivities, and heavy metal concentrations. The electrical conductivity of compacted soil-bentonite mixtures was found to increase proportionally with bentonite content. Accordingly, the hydraulic conductivity of compacted soil-bentonite mixtures which decreases linearly with increasing bentonite content was found to have an inversely proportional relationship with the electrical conductivity. In column tests, electrical conductivity breakthrough curves and concentration breakthrough curves were simultaneously obtained. These results indicated that electrical conductivity measurement can be an effective means of detecting heavy metal transport at the desired locations within barriers and verifying possible contaminant leakage. Experimental results obtained from this study showed that the electrical conductivity measurement can be a promising tool for monitoring of containment barrier.

The Role of Organic Matter in Gold Occurrence: Insights from Western Mecsek Uranium Ore Deposit

  • Medet Junussov;Ferenc Madai;Janos Foldessy;Maria Hamor-Vido
    • Economic and Environmental Geology
    • /
    • v.57 no.4
    • /
    • pp.371-386
    • /
    • 2024
  • This paper presents analytical insights regarding into the occurrence of gold within organic matter, which is hosted by solid bitumen and closely associated with uranium ores in the Late Permian Kővágószőllős Sandstone Formation in Western Mecsek, South-West Hungary. The study utilizes a range of analytical techniques, including X-ray powder diffraction (XRPD) and wavelength dispersive X-ray fluorescence (WD-XRF) for comprehensive mineralogical and elemental analysis; organic petrography and electron microprobe analysis for characterizing organic matter; and an organic elemental analyzer for identifying organic compounds. A three-step sequential extraction method was used to liberate gold from organic matter and sulfide minerals, employing KOH, HCl, and aqua regia, followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) to quantify gold contents. The organic matter is identified as comprising two vitrinite types (telinite V1 and reworked V2) and three solid bitumen forms: nonfluorescing (B1) and fluorescing (B2) fillings within the V1, as well as homogenous pyrobitumen (PB) occupying narrow cracks and voids within globular quartz. Despite the samples exhibiting low total organic carbon content (<1 wt%), they display high sulfur content (up to 6 wt%) and the sequentially extracted noble metal content from the organic matter is found to total 7.45 ppm gold. The research findings suggest that organic matter plays crucial roles in ore mineralization processes. Organic matter acts as an active component in the migration of gold, uranium, and hydrocarbons within sulfur-rich hydrothermal fluids. Additionally, organic matter contributes to the entrapment and enrichment of gold in hetero-atomic organic fractions, forming metal-organic compounds. Moreover, uranium inclusions are observed as oxide/phosphate minerals within solid bitumen and associated vitrinite particles. These insights into the occurrence and distribution of gold within organic matter highlight substantial exploration potential, guiding additional research activities focused on organic matter within the Kővágószőllős Sandstone Formation at the Western Mecsek deposit.

Studies on the Mineral Content of Edible Mushrooms (식용 버섯류의 무기물 함량)

  • 허윤행;김옥경
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.1
    • /
    • pp.129-135
    • /
    • 1991
  • To investigate on the trace element content of twelve edible mushrooms and Aloe arborescens, i. e., Lentinus edodes, Ganoderma lucidum (culturing in wood and soil), Tricholoma matsutake, Agaricus bisporus, Cyrophora esculenta, Auricularia auricula-Jude (produced in Korea and China), Sarcodon asparatus, Pleurotus ostreatus, Coriolus versicolor, Smilax rotundifolia and Aloe arborescerts were analyzed by Atomic absorption spectrometer. The obtained results were summerized as follows: 1. Potassium, sodium, magnesium and iron content for the most part samples were in large quantities, especially phosphorus content of those was highest ammount for the all samples. 2. Sodium content was much ammount in the Lentinus edodes (39mg) and Ganoderma lucidurn (20 mg), Culturing in wood and soil, while potassium was very high ammount in the Aloe arborescens and other samples. Mush ammount of magnesium as compared with others was Lentinus edodes (144mg), Ganoderma lucidurn (128mg), Aloe arborescerts (50mg) and pleurotus ostreatus (60mg). Phosphorus content of Ganoderma lucidurn, Lentinus edodes, Gyrophora esculenta, Auricularia polytricha and Agaricus bisporus was much ammount while iron content of all samples equality higher ammount. Sodium content of Aloe arborescens was not analyzed out for almost all, its potassium (82mg), magnesium (50mg) and iron (18rng) content comparatively higher quentity than others minerals and phosphorus volume (4.9mg) as compared with others, was conspicuously lower detect. 4. Cadimium and lead content of harmful metal element were detected on trace quentity for the most part samples 5. Organic acids of samples i.e., Legtinus edodes, Agaricus bisporus, Pleurotus ostreatus and Ganoderma lucidum were Citrate, Malate, Fumalate, Succinate, Oxalate, Acetate, Lactate, and Tartarate and Citrate, Malate and Fumarate contents were higher amount remarkbly than other organic acids. Tartarate content was trace amount.

  • PDF

Changes of Nitrogen Fixation Activity and Heavy Metal Accumulation of Vicia amoena Community from Kumho Riverside (금호강유역 갈퀴나물군락의 중금속 축적과 질소고정 활성의 변화)

  • 박태규;박용목;송은주;송승달
    • The Korean Journal of Ecology
    • /
    • v.22 no.3
    • /
    • pp.131-137
    • /
    • 1999
  • This study was carried out to investigate the activity of nitrogen fixation and accumulation of heavy metal and inorganic matter in Vicia amoena community at lower region in Kumho riverside, including Youngchon, Chimsangyo, Paldalgyo, Talseochon and Kumhogyo. The contents of inorganic matter and heavy metal of Kumho riverside soil increased in the down stream in each organ of the plant growing in the riverside. Generally, V. amoena community showed rapid growth of shoot and high value of Top/Root ratio. V. amoena community showed higher water content of shoot at late growth stage and higher chlorophyll content. The root nodule of V. amoena community appeared in April and increased by 0.30, 0.27, 0.24, 0.06 and 0.14 g/plant, and nitrogen fixation activity of nodule attained 20.1, 16.8, 15.4, 8.5 and 5.3 μmol·C₂H₄·g fw nodule/sup -1/·h/sup -1/ for non-contaminated area Youngchon, Chimsangyo, Paldalgyo, Talseochon and Kumhogyo, respectively, in June:. Nodule formation and nitrogen fixation activity were reduced in the down stream by the soil contamination and heavy metal accumulation and showed minimum values. at Talseochon and Paldalgyo. V. amoena showed growth adaptation against heavy metal toxicity by restricting heavy metal such as Pb, Cu, Zn, Fe from transport, and by accumulating high Ca ion in shoot, nitrogen and phosphorus in root at late growth stage than those at early one, respectively, but total heavy metal per plant showed higher values in shoot than those in root by high T/R ratio of plant growth.

  • PDF

Growth of Zeolite-X Crystals on Metal Sieves Surface by Continuous Crystallization Method (연속적인 결정화 방법에 의한 금속 지지체상에서 Zeolite-X의 결정성장)

  • Park, Jeong-Hwan;Suh, Jeong-Kwon;Jeong, Soon-Yong;Lee, Jung-Min;Doh, Myung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.939-944
    • /
    • 1997
  • The films of zeolite X on the surface of metal sieve were prepared by continuous crystallization method. It is known that the growth of zeolite crystal on the surface of metal is mainly dependent on the surface composition of metal sieve. In the present work, the zeolite nuclei could be easily formed as Cr content on the metal surface was removed by acid treatment. In order to investigate the proedure growing of zeolite crystal by the continuous crystallization method, the composition of zeolite X($6.36Na_2O-Al_2O_3-5.3SiO_2-190.8H_2O$)was supplied every 12hour. Then the mechanism and inter-relationship between the metal surface and nucleation are investigated. The results show that as the content of silica increases in the gel mixture, the nuclei of zeoilite are easily formed on the metal surface. Also, it was confirmed that the particle of zeolite stuck on the metal surface continues the linear growth. The particles are combined by the reaction of polycondensation, and finally become the shape of crystal. The sample synthesized by the film type was confirmed as zeolite X by the analyses of SEM and XRD.

  • PDF

Corrosion Characteristics of HT-9 in 500℃ and 650℃ Pb-Bi Liquid Metal

  • Song, T.Y.;Cho, C.H.
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.94-98
    • /
    • 2006
  • The next generation nuclear power reactor will use Pb-Bi as the cooling material. The steel structure materials such as HT-9 used in the reactor suffer from corrosion when they are exposed to high temperature Pb-Bi. Therefore corrosion should be prevented to use Pb-Bi as the coolant material without any safety problem. One method is to control the oxygen content in Pb-Bi. An appropriate amount of oxygen in Pb-Bi can produce a thin oxide layer on steel, and this layer protects the steel from corrosion attack. Since the required oxygen content in Pb-Bi is in the range of $10^{-5}$ to $10^{-7}$ wt%, this small oxygen content can be controlled by flowing a mixture of hydrogen gas and water vapor. The stagnant corrosion test of HT-9 samples was performed by controlling the oxygen content up to 2,000 hours. The corrosion behavior of HT-9 was analyzed at the temperatures of $500^{\circ}C$ and $650^{\circ}C$ with a reduced condition and a oxygen content of $10^{-6}$ wt%.

Variations in Carbon Content and Sintered Density of M3/2 Grade High Speed Steel Powders on Metal Injection Molding Process (사출성형한 M3/2계 고속도공구강 분말의 탄소함량 및 소결밀도 변화)

  • 이광희
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.170-178
    • /
    • 1997
  • An investigation was performed to apply the M3/2 grade high speed steel for metal injection molding using both prealloyed and elementally blended powders. The injected samples were subjected to a debinding step in $H_2/N_2$ gas atmosphere at a ratio that affected the carbon content of the material. The carbon content ranged from 1.4wt.% to 1.43wt%. with increasing $H_2$ content up to 80% $H_2$ in $H_2/N_2$ atmosphere for the prealloyed powders. The carbon contents of the elementally blended powders exhibited 1.44wt.% and 1.62wt.% at 10% $H_2/N_2$ and 20% $H_2/N_2$ gas, respectively. This level decreased to 0.17wt.% upon increasing the $H_2$ content. The sintered density of both powders increased rapidly as the temperature reached the liquid phase forming temperature. After forming the liquid phase, the density rapidly increased to the optimum sintering temperature for the prealloyed powders, whereas the density of mixed elemental powders goes up slowly to the optimum sintering temperature. The optimum sintering temperature and density are 126$0^{\circ}C$ and 97.3% for the prealloyed powders and 128$0^{\circ}C$ and 96.9% for the elementally blended powders, respectively. The microstructure of the specimen at the optimum sintering temperature consisted of fine grains with primary carbides of MC and $M_6C$ type for the prealloyed powders. The elementally blended powders exhibited coarse grains with eutectic carbides of MC, $M_2C$ and $M_6C$ type.

  • PDF

Evaluation of Heavy Metal Pollution and Plant Survey around Inactive and Abandoned Mining Areas for Phytoremedation of Heavy Metal Contaminated Soils (${\cdot}$ 폐광지역 오염토양의 phytoremediation을 위한 식물자원 검색)

  • Kim, Jeong-Gyu;Lim, Soo-Kil;Lee, Sang-Hwan;Lee, Chang-Ho;Jeong, Chang-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.28-34
    • /
    • 1999
  • This study was carried out to assess heavy metal pollution at 16 abandoned mining areas and to get basic data for phytoremediation. In most of surveyed area, there was no vegetation cover and soil reaction shows in low to moderate pH. Low CEC, low organic matter content were the general properties of these soils. Heavy metals content of these soils were exceed background level of unpolluted soil in Korea, especially Cu content was 2,634mg/kg at Jeil site, 3,415mg/kg Zn, 8.03mg/kg Cd at Yonhwa 2 site. This is far above tolerance limit In plant survey, very often observed plants were Pinus densiflora, and Rohinia psuedo-acacia in woody plant, Artemisia princeps, and Dianthus sinensis in herbs. Artemisia princeps had higher concentration of Zn, Cd and Dianthus sinensis had higher concentration than other plants. From the results, heavy metal concentration in plants and plant's ecotype properties, could be said that Artemisia princeps and Miscanthus sinensis have a potential of soil remediation plant. More studies are demanded to find the heavy metal tolerance species and to understand physiology property of tolerance plants, soil condition, climate etc., for successful soil remediation by plants.

  • PDF

A Study on the Horizontal and Vertical Distribution of Heavy Metal Elements in Slime Dump from Dukum Mines, Korea (덕음광산 선광광미와 주변토양의 중금속에 대한 수평.수직적인 분산에 관한 연구)

  • 박영석
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.91-100
    • /
    • 2000
  • It has been more than ten years since Dukun mine was abandoned. Tailings of waste deposits and slime dumps in the abandoned Dukum mine have been left to be deserted for fifty years. The results of fifty years of neglecting are nothing short of major environmental problems. Slime dumps have been exposed to air and water in the mine over ten years and then soil profile has been formed well. Soil in the upper layer (A horizon) is the light gray color due to the leaching of cations. Soil in the lower layer (A2 horizon, 0.2∼0.3m)is tinted with reddish brown and yellowish brown color due to the development of iron oxides and iron hydroxides. Soil in the lower part of B horizon of (1.0∼3.0m) with the growth of copper and zinc oxides exposes to the bluish green, light blue, and dark gray. Ranging from 3m to 8m in depth, 85 samples were taken from 22 sampling sites with 50m intervals located on the slime dump area with hand auger and trench (open cut). As tailings was distributed, heavy metal elements extracted by the process of surface water and ground water move and disperse in to the hydrosphere. Waste dumps were distributed in and around the mine and water draining from those dumps be a potential source of contamination. Soils, thus, can be dispersed into downslope and downstream through wind and water by clastic movement. These materials may be deposited in another horizon if the water is withdrawn, or if the materials are precipitated as a result of differences in pH, or other conditions in deeper horizons. These were primarily associated with acid mine drainage. The characteristics and rate of release of acid mine drainage are influenced by various chemical and biological reactions at the source of acid generations. Prolonged extration of heavy metal elements has a detrimental effect on the agricultural land and residental area. Twenty soil samples were collected from the agricultural land in the area (0∼30 cm). Seventeen samples were also taken from the sediment in the stream running alongside the dumps. The dispersion patterns of heavy metal elements are as follows: The content of As ranged 2∼6 ppm in a horizon, 20∼125 ppm in B horizon with large amount of clay mineral is concentrated and the content of Cd ranged 1∼2 ppm in A horizon, 4∼22 ppm in B horizon. Like Cd, the content of As, Cu, Zn, Pb in B horizon is higher than that in A horizon (approximately 5∼100 times). When soil formation proceeds in stages, it is necessary to investicate the B horizon with the concentration of heavy metal and preventive measures will have to established.

  • PDF

Removal of Heavy Metal Ions Using Wood Charcoal and Bark Charcoal (목탄 및 수피탄의 중금속 이온 제거)

  • Jo, Tae-Su;Lee, Oh-Kyu;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.29-37
    • /
    • 2007
  • To evaluate the effect of carbonization temperature of charcoal on the heavy metal adsorption property, Quercus mongolica wood and Larix kaempferi bark powder (100~60 mesh) were carbonized at between 400 and $900^{\circ}C$ at intervals of $100^{\circ}C$. In the properties of carbonized materials which affect the adsorption ability, pH increased with increasing the carbonization temperature, so that the pHs of wood and bark charcoal carbonized at $900^{\circ}C$ were 10.8 and 10.4, respectively. Also, in both materials, the carbon content ratio became larger as the carbonization temperature was raised. At the same carbonization temperature, carbon content ratio of the bark charcoal tended to be greater than that of the wood charcoal. In case of iodine adsorption which indicates the adsorption property in liquid phase, the wood charcoal showed higher adsorption value than the bark charcoal. From the investigation of adsorptive elimination properties of the charcoals against 15 ppm Cd, Zn, and Cu, the higher the carbonization temperature, the greater elimination ratio was. In comparison, the wood charcoal presented higher elimination ratio than that of the bark charcoal. In the wood charcoals carbonized at higher than $500^{\circ}C$, especially, 0.2 g of the charcoal was enough to eliminated almost 100% of the heavy metal ions. Heavy metal ion elimination ratio of the charcoals depended on the kinds of adsorbates. The effectiveness of adsorbates in adsorptive elimination by the charcoals were in order of Cu > Cd > Zn. This is because the physicochemical interaction between the adsorbate and adsorbent affects their adsorption properties, it is considered that subsequent researches are needed to improve the effectiveness of heavy metal adsorption by the charcoals.