• Title/Summary/Keyword: metal catalyst

Search Result 795, Processing Time 0.029 seconds

Design of the Stand-alone Autothermal Reformer for Natural Gas (자체 기동형 천연가스 자열개질기 설계)

  • Koo, Jeongboon;Kim, Youngae;Kwon, Hyunji;Kwak, Inseob;Sin, Jangsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.113.1-113.1
    • /
    • 2010
  • 본 연구에서는 중 소형 SOFC에 적용할 수 있는 연료 변환 시스템으로 자체 기동 및 독립운전이 가능한 천연가스 자열개질(ATR) 반응기를 $10Nm^3/hr$급으로 개발하고자한다. 설계된 천연가스 자열개질기는 자열개질 촉매를 코팅한 금속 모노리스형 촉매체를 반응기 내에 장착함으로써 반응열을 신속하게 제거 또는 공급할 수 있는 시스템으로 구성되었다. 이는 금속 모노리스의 뛰어난 열전도 능력에 의해 반응기 내의 촉매층 전체 온도 분포를 균일하게 유지할 수 있는 저에너지형 자열개질 반응기이다. 또한 빠른 기동 특성을 실현하기 위하여 전기 발열식 촉매체(EHC ; Electically Heated Catalyst)를 장착한 start-up 시스템을 적용하여 천연가스 자열개질 반응기의 신속한 기동과 장치 간편화를 실현하였으며, 합성 syngas의 배열 회수를 위한 최적 열교환 시스템을 설계/적용함으로써 에너지 효율 향상을 도모하였다. 이와 같은 촉매 및 구조 시스템을 가지는 천연가스 자열개질 반응용 소형 연료변환 시스템을 원통형의 이중관 구조로 구성하고, 독립운전 모드로 개발함으로써 소형 SOFC의 연료 변환장치의 적용에 용이하게 하고자 한다.

  • PDF

Comparison of Catalytic Activity for Methanol Electrooxidation Between Pt/PPy/CNT and Pt/C

  • Lee, C.G.;Baek, J.S.;Seo, D.J.;Park, J.H.;Chun, K.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • This work explored the catalytic effect of Pt in multi-wall carbon nanotube and poly-pyrrole conductive polymer electrocatalysts (Pt/PPy/MWCNT). A home-made Pt/PPy/MWCNT catalyst was first evaluated by comparing its electrochemical active surface area (ESA) with E-Tek commercial catalysts by cyclic voltammetry in $H_2SO_4$ solution. Then, the methanol oxidation currents of Pt/PPy/MWCNT and the hydrogen peaks in $H_2SO_4$ solution were serially measured with microporous electrode. This provided the current density of methanol oxidation based on the ESA, allowing a quantitative comparison of catalytic activity. The current densities were also measured for Pt/C catalysts of E-Tek and Tanaka Precious Metal Co. The current densities for the different catalysts were similar, implying that catalytic activity depended directly on the ESA rather than charge transfer or electronic conductivity.

Nanowire Patterning for Biomedical Applications

  • Yun, Young-Sik;Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.382-382
    • /
    • 2012
  • Nanostructures have a larger surface/volume ratio as well as unique mechanical, physical, chemical properties compared to existing bulk materials. Materials for biomedical implants require a good biocompatibility to provide a rapid recovery following surgical procedure and a stabilization of the region where the implants have been inserted. The biocompatibility is evaluated by the degree of the interaction between the implant materials and the cells around the implants. Recent researches on this topic focus on utilizing the characteristics of the nanostructures to improve the biocompatibility. Several studies suggest that the degree of the interaction is varied by the relative size of the nanostructures and cells, and the morphology of the surface of the implant [1, 2]. In this paper, we fabricate the nanowires on the Ti substrate for better biocompatible implants and other biomedical applications such as artificial internal organ, tissue engineered biomaterials, or implantable nano-medical devices. Nanowires are fabricated with two methods: first, nanowire arrays are patterned on the surface using e-beam lithography. Then, the nanowires are further defined with deep reactive ion etching (RIE). The other method is self-assembly based on vapor-liquid-solid (VLS) mechanism using Sn as metal-catalyst. Sn nanoparticle solutions are used in various concentrations to fabricate the nanowires with different pitches. Fabricated nanowries are characterized using scanning electron microscopy (SEM), x-ray diffraction (XRD), and high resolution transmission electron microscopy (TEM). Tthe biocompatibility of the nanowires will further be investigated.

  • PDF

Preparation of Dihydroxy Naphthalene/TiO2 Complex via Surface Modification and Their Photocatalytic H2 Production Performances Under Visible Light

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2056-2062
    • /
    • 2013
  • The dihydroxy naphthalene/$TiO_2$ complexes with different substitution patterns were prepared by surface modification. X-ray diffraction, UV-Vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared composite materials. The results indicated that the surface modification did not influence the crystallization of $TiO_2$. The visible-light absorbances of prepared dihydroxy naphthalene/$TiO_2$ complexes could be assigned to the ligand-to-metal charge transfer. The obtained catalyst exhibited outstanding photocatalytic activity and stability under visible light. A linear relationship existed between the percentages of hydroxynaphthalenes coordinated on $TiO_2$ surface and $H_2$ production ability. The substitution pattern of dihydroxy naphthalene and $CH_3OH$ content could also influence the photocatalytic performance remarkably. The photocatalytic $H_2$ production ability was further improved after loading with ultra low concentration of Pt, 0.02 wt %. The possible mechanism was proposed.

Development of Catalytic Combustion Boiler in Domestic Use (가정용 촉매연소 보일러 개발)

  • Kim, Ho-Yeon;Lee, Seung-Ho;Cho, Won-Ihl;Baek, Young-Soon
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.677-682
    • /
    • 2001
  • Catalytic combustion is the environmental-friendly technology, which has been applied to a variety of areas for industrial and domestic use in recent years. Accordingly, this study performed the development of the catalytic manufacturing technology for the high temperature and of the catalytic combustor in priority, which were aimed to be applied to a commercialized boiler. Paliadium(Pd) of a noble metal was used as a catalyst for the high temperature and supported on alumina($Al_[2}O_{3}$) and zirconia($ZrO_{2}$) in constant weight ratio. Activity of Pd catalysts is compared and analyzed in the catalytic combustion of natural gas. The ratio of $Pd/Al_{2}O_{3}=4$ was found to be better than any other weight ratios in activity and durability. The performance examination of catalysts and of combustion through the plate-type combustor made it possible to be developed the cylindrical-type combustor which has increased combustion area. Catalytic combustion boiler of 25,000 kcal/hr class was also developed, which had the optimum combustion condition at the nozzle of 5.95mm and the orifice of 21mm. This condition was determined through the performance experiments of catalytic combustion boiler to which the cylindrical-type catalytic combustor was applied.

  • PDF

Synthesis and Structural Characterization of Novel Organohydroborate Hafnocene Complex (η5-C5H5)2Hf{(μ-H)2BC8H14)}Cl

  • Chung, Jang-Hoon;Lee, Sang-Mock
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.759-761
    • /
    • 2006
  • The compound B(C6F5)3 and its variations have been widely employed as alkyl carbanion abstracting reagents to produce metallocene cations for olefin polymerization.1-3 Weakly coordinating anions containing boron can greatly improve the activity of metallocene catalysts used in industrial olefin polymerization4 and thus group IV and V metallocene complexes of the organohydroborate anions have been intensively investigated.5 Recently, many organohydroborate metallocene complexes have been reported by Shore and co-workers.6-8 A common structural feature of those complexes is the three-center two electron M-H-B bond, like that observed in transition metal tetrahydroborate complexes but the reactivity and fluxional behavior of organohydroborate complexes are unlike those of the tetrahydroborate analogues.6 Although many of those metallocenes have been synthesized, few complexes could be used in the olefin polymerization and then this laboratory has been involved in the chemistry of the cyclic organohydroborate anions, and their group IV metallocene derivatives for the catalyst.9 Described here is recent work that led to the preparation of a novel cyclic organohydroborate hafnocene complex (h5-C5H5)2Hf ?(μ-H)2BC8H14 ,Cl. The hafnocene complex contains the three-center two electron bond Hf-H-B10 in which the hydride abstraction for olefin polymerization may occur.

Effect of Rapid Thermal Annealing on Growth and Field Emission Characteristics of Carbon Nanotubes

  • Ko, Sung-Woo;Shin, Hyung-Cheol;Park, Byung-Gook;Lee, Jong-Duk;Jun, Pil-Goo;Kwak, Byung-Hwak;Noh, Hyung-Wook;Uh, Hyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.453-455
    • /
    • 2004
  • The effect of rapid thermal annealing (RTA) treatment on the growth characteristics of CNTs was investigated. We observed that Ni catalyst film was agglomerated by RTA treatment, resulting in the formation of Ni nanoparticles. The well aligned CNTs were grown from the Ni nanoparticles by plasma enhanced chemical vapor deposition (PECVD). It is shown that the size and distribution of the nanoparticles depend mainly on the annealing temperature and initial thickness of the metal layer. Also, it was found that CNTs grown through optimal RTA treatment had the more improved field emission characteristics than those of as-grown CNTs.

  • PDF

Hydrogen Storage in Ni Nanoparticles-Dispersed Multiwall Carbon Nanotubes (Ni Nanoparticles이 doping된 Multiwall Carbon Nanotubes의 수소저장 특성에 관한 연구)

  • Lee, Ho;Kim, Jin-Ho;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.74-82
    • /
    • 2002
  • Ni nanoparticles이 표면에 분산된 mutiwall carbon nanotubes (MWNTs)의 수소저장 특성을 분석하였다. Metal nanoparticles의 분산 방법은 incipient wetness impregnation procedure을 사용하였는데, 이러한 Ni catalysts의 역할은 기존에 알려진 Li, K doping과 같은 개념으로 기상의 수소를 분해하여 carbon 표면에 chemical adsorption 시키는 역할을 하게 된다. 실제로 Ni nanoparticles이 6wt% loading된 경우에는 thermal desorption spectra를 분석한 결과 ~2.8wt% hydrogen이 ~340-520K의 온도범위에서 방출되는 것을 관찰할 수 있었다. Kissingers plot을 통해서 MWNTs와 hydrogen과 interaction energy를 구한 결과 ${\sim}31kJ/molH_2$를 얻을 수 있었으며 이 값은 기존의 SWNTs에 hydrogen이 physi-sorption에서 실험적으로 얻을 수 있었던 값보다 1.5배 큰 값이라고 할 수 있다. 자세한 수소저장 기구를 분석하기 위해서 FT-IR분석을 한 결과 C-Hn stretching vibrations이 관찰되었으며 mono-hydride와 weak di-hydride $sp^3$가 형성된 것으로 해석 될 수 있었다. 이와 같은 결과는 Ni nanoparticle들이 예상과 같이 hydrogen molecules을 dissociation하는 역할을 하는 것을 의미한다. 연속적인 thermal desorption 실험을 통해 가역성도 평가하였다.

Correlation Between the Composition of Compliant Coating Material and Drag Reduction Efficiency (유연벽면 점탄성 소재 배합비와 저항저감 효과의 상관관계)

  • Lee, In-Won;An, Nam-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.389-395
    • /
    • 2009
  • A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Pusan National University. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of $0.55{\times}0.25m^2$ size. A set of the insertions was designed and manufactured: 3 mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic$^{(R)}$ S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss factor were measured accurately for these materials in the frequency range from 40 Hz to 3 kHz. The aging of the materials (variation of their properties) for the period of one year was documented as well. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coating. The strong compliant coating achieved 5% drag reduction within a velocity range $20{\sim}40$ m/s while standard and weak coatings increased drag reduction.

A Study on Synthesis Catalysts for Vinylester Resin (비닐에스테르 수지의 합성촉매에 관한 연구)

  • Hong, Suk-Pyo;Choi, Sang-goo
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.229-237
    • /
    • 1991
  • Vinylester was syntheszed in the presence of amine and metal catalysts, such as triethylamine(TEA), triethylbenzyl ammonium chloride (TEBAC), cetyltrimethyl ammonium bromide (CTMAB), chromium acety] acetate (CAA), and triphenylantimony (TPA). Apropriate use of amine and organometal catalysts were 1.7~2.2 % (Wt. %), 2.5~3.1 % (Wt %) of charged methacrylic acid (MAA) in respect of reactivity, gel-time, and storage stability. The Order of reactivity was TEA>TEBAC>CTMAB>CAA>TPA. Temperature independence of catalyst showed more large deviation above $110^{\circ}C$. Storage stability could be improved without delay of gel-time by adding TPA in 2.0 % (Wt %) of charged MAA after synthesis.

  • PDF