• Title/Summary/Keyword: metal bipolar plate

Search Result 50, Processing Time 0.025 seconds

Self-pressurization Effect and PEMFC Performance Improvement Using Metal Foam Compression (금속 폼 압축에 의한 자가 가압 효과 및 PEMFC 성능 개선)

  • Kim, Hyeonwoo;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.618-623
    • /
    • 2022
  • The bipolar plate is a key component of the polymer electrolyte membrane fuel cell (PEMFC) that transfers reactants and electrons, discharges water and heat as by-products, and serves as a mechanical support for the membrane electrode assembly (MEA). Therefore, the flow field structure of the bipolar plate plays an important role in improving fuel cell performance. In this study, PEMFC performance was investigated with copper foams with different compressibility ratios applied to cathode bipolar plates using a 25 cm2 unit cell. The total resistance decreased as the compressibility ratio of the metal foams increased, and, in particular, the charge transfer and mass transfer resistance were significantly improved compared to the serpentine flow field, lowering voltage loss in medium and high current density region. In the case of pressurized air reactant flow with serpentine structure, fuel cell performance was similar to that of a compressed metal foam flow field (S3) up to the medium current density region, but low performance appeared in the high current density region due to flow field structure limitations.

Development of Surface Coating Technology fey Metallic Bipolar Plate in PEMFC : I. Study on Surface and Corrosion Properties (PEMFCB금속분리판 코팅 기술 개발 : I. 표면 및 부식 특성 평가)

  • Chung, Kyeong-Woo;Kim, Se-Yung;Yang, Yoo-Chang;Ahn, Seung-Gyun;Jeon, Yoo-Taek;Na, Sang-Mook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.348-351
    • /
    • 2006
  • Bipolar plate, which forms about 50% of the stack cost, is an important core part with polymer electrolyte membrane in PEMFC. Bipolar plates have been commonly fabricated from graphite meterial having high electrical conductivity and corrosion resistance. Lately, many researchers have concentrated their efforts on the development of metallic bipolar plate and stainless steel has been considered as a potential material for metallic bipolar plate because of its high strength, chemical stability, low gas permeability and applicability to mass production. However, it has been reported that its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions and an increase in contact resistance by the growth of passive film therefore, its corrosion resistance as well as contact resistance must be improved for bipolar plate application. In this work, several types of coating were applied to 316L and their electrical conductivity and corrosion resistance were evaluated In the simulated PEMFC environment. Application of coating gave rise to low interfacial contact resistances below $19m{\Omega}cm^2$ under the compress force of $150N/cm^2$. It also made the corrosion potential to shift in the posit ive direct ion by 0.3V or above and decreased the corrosion current from ca. $9{\mu}A/cm^2$ to ca. $0.5{\mu}A/cm^2$ in the mixed solution of $0.1N\;N_2SO_4$ and 2ppm HF A coat ing layer under potentiostatic control of 0.6V and $0.75V_{SCE}$ for 500 hours or longer showed some instabilities, however, no significant change in coat Ing layer were observed from Impedance data. In addition, the corrosion current maintained less than $1{\mu}A/cm^2$ for most of time for potentiostatic tests. It indicates that high electrical conductivity and corrosion resistance can be obtained by application of coatings in the present work.

  • PDF

Fabrication and Testing of Glass Bipolar Plates for Application on Micro PEM Fuel Cells (마이크로 연료 전지를 위한 유리 바이폴라 플레이트의 제작 방법 및 성능 평가)

  • Jang, Bo-Sun;Lee, Jong-Kwang;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.289-292
    • /
    • 2009
  • The fabrication method of glass bipolar plates for micro PEM fuel cell application has been established and performance evaluation has been carried out. The advantages of glass bipolar plates for micro PEM fuel cells are light weight, high chemical resistivity, and easy manufacture. The MEMS fabrication process of anisotropic wet etching, thermal & UV bonding along with metal layer deposition has been introduced. From performance evaluation, it was shown that the micro fuel cell with a metal layer deposited on the reactive area yielded higher power density than the one without it. But both power densities of the two cases showed out to be adequate with the current status of micro fuel cell technology.

  • PDF

Fabrication Process and Forming Analysis of Fuel Cell Bipolar Plate by Injection Condition of Vacuum Die Casting (진공 다이캐스팅 공법의 사출조건에 따른 연료전지용 분리판 성형 해석 및 제조 공정)

  • Jin, Chul-Kyu;Jang, Chang-Hyun;Kim, Jae-Sung;Choi, Jae-Won;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.274-283
    • /
    • 2011
  • The vacuum die casting is a promising candidate of the stamping process for fabrication of fuel cell bipolar plate due to its advantages, such as precision casting, mass production and short production time. This study proposes vacuum die casting process to fabricate bipolar plates in fuel cell. Bipolar plates were fabricated under various injection conditions such as molten metal temperature and injection velocity. Also, according to injection velocity conditions, simulation results of MAGMA soft were compared to the experimental results. In case of melt temperature $650^{\circ}C$, misrun occurred. When the melt temperature was $730^{\circ}C$, mechanical properties were low due to dendrite microstructure. Injection velocity has to set at more than 2.0 m/s to fabricate the sound sample. When melt temperature, injection velocity (Fast shot), and vacuum pressure are $700^{\circ}C$, 2.5 m/s and 30 kPa respectively, sample had good formability and few casting defects. Simulation results are mostly in agreement with experimental results.

Fabrication of Thin Plate of Semisolid Material using Slope Plate Process and Development of Fabrication Apparatus (Slope plate 공법을 이용한 반응고 박판 및 제조 장치 개발)

  • Koo, Ja-Yoon;Bae, Jung-Woon;Jin, Chul-Kyu;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.24-31
    • /
    • 2012
  • In this study, semi-solid thin plate of A 356 aluminum alloy was fabricated by using slope plate apparatus and vacuum pressurization. Slope plate was used to produce semi-solid material with spheroidal microstructures. After molten metal was poured into the slope plate connected to the pouring hole of die, semi-solid material flowed into the die cavity by vacuum degree. The primary crystals of the cast metal became spheroidal. In order to increase the working pressure, gas pressurization of U shape was designed for fabrication of thin plate. For 3 bar of gas pressure and 60 mmHg of vacuum degree, thin plate was fabricated without defects on surface.

The Effect of Contact Resistance and Electric Conductivity on PEMFC Performance (접촉저항 및 전기전도도가 연료전지 성능에 미치는 영향)

  • Kim, Ki-Jung;Yun, Yong-Sik;Jeon, Yu-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.133-136
    • /
    • 2007
  • In this work, 3-dimensional, non-isothermal numerical simulation was performed to analyse the effects of contact resistance and electric conductivity of GDL on the fuel cell performance. For numerical simulation contact resistance of Carbon and Stainless steel was measured. The simulation results reveal that 10 times change of electric conductivity leads only 6.5% decrease of PEMFC performance. But stainless steel which has high contact resistance decrease fuel cell performance over 25% at a high current density region than carbon. This results show that suitable Surface treatment technology is needed for metal bipolar plate, especially stainless steel.

  • PDF

Corrosion resistance and cell performance of CrN-coated stainless steels as a metal bipolar plate for DMFC (CrN 코팅 STS 금속분리판의 부식 특성과 DMFC 성능 평가)

  • Lee, Se-Hee;Park, Young-Chul;Lim, Seongyop;Kim, Sang-Kyung;Jung, Doo-Hwan;Choi, Se-Young;Peck, Dong-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.137.2-137.2
    • /
    • 2010
  • 본 연구는 스테인리스 스틸(STS)을 직접메탄올 연료전지(DMFC)용 바이폴라 플레이트에 적용하기 위한 것이다. 약산성의 연료전지 환경에서 부식저항성을 향상시키고자 오스테나이트계 STS 316L과 페라이트계 STS 430에 UBM(unbalanced magnetron) DC sputter로 CrN 코팅막을 제작하였다. CrN이 코팅된 스테인리스 스틸은 부식특성, 접촉 저항 및 접촉각 등을 측정하여 무 코팅의 스테인리스 스틸과 특성을 비교하였다. 그리고 이들 재료의 연료전지(DMFC) 적용 가능성을 알아보기 위하여 단위전지로 제작하여 연료전지 성능 등을 측정하고 평가하였다. 무 코팅 스테인리스 스틸(STS 316L, STS 430)과 CrN 코팅 스테인리스 스틸의 부식저항 특성은 동전위와 정전위 실험으로 조사하였다. 동전위 부식 실험은 -0.4~1.0 V로 0.001 M의 황산용액 또는 메탄올을 첨가하여 질소 또는 공기의 환경에서 실험을 실시하였으며, 정전위 부식 실험은 0.4 V 또는 0.6 V에서 진행하였다. 연료전지의 단전지 측정은 실제 DMFC의 운전조건에서 실시하였다. 부식실험과 단전지 실험 전/후 메탈 바이폴라 플레이트의 조직 변화는 SEM을 통해 관찰하였고, 부식산화물의 화학적 조성과 메탈 바이폴라의 표면은 EDS를 이용하여 측정하였다.

  • PDF

Numerical analysis of the shape effect on PEMFC's Performace (연료전지 성능에 영향을 미치는 채널형상에 대한 연구)

  • Kim, K.J.;Jeon, Yu-Taek;Kim, Hyo-Gyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.59-62
    • /
    • 2006
  • Formability is requested to successfully develop of a metal bipolar plate for mass production. From this point of view, wider channel and land width is more helpful to improve formability. But the performance of the fuel cell can be affected by its channel and land shape. So it is very important to select proper channel and land shape not to deteriorate the fuel cell performance. In this work, 3-dimensional, non-isothermal numerical simulation was performed to analyse the effects of channel and land width on the fuel cell performance. 3 types of straight channel were selected for the numerical simulation. The simulation results reveal that wide channel and land width lower fuel cell performance and decrease voltage at a high current density region. Water activity, temperature, oxygen concentration distributions were investigated to find the reasons of performance degradation. The results show that wide channel and land width give an bad effect on fuel cell performance because of low cool ins efficiency and lack of oxygen gas under the land.

  • PDF

Corrosion and Surface Resistance of Ni-C Composite by Electrodeposition (전해도금에 의한 Ni-C 복합층의 내식성 및 표면 전기저항)

  • Park, Je-Sik;Lee, Sung-Hyung;Jeong, Goo-Jin;Lee, Churl-Kyoung
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.288-294
    • /
    • 2011
  • Simultaneous Ni and C codeposition by electrolysis was investigated with the aim of obtaining better corrosion resistivity and surface conductivity of a metallic bipolar plate for application in fuel cells and redox flow batteries. The carbon content in the Ni-C composite plate fell in a range of 9.2~26.2 at.% as the amount of carbon in the Ni Watt bath and the roughness of the composite were increased. The Ni-C composite with more than 21.6 at.% C content did not show uniformly dispersed carbon. It also displayed micro-sized defects such as cracks and crevices, which result in pitting or crevice corrosion. The corrosion resistance of the Ni-C composite in sulfuric acid is similar with that of pure Ni. Electrochemical test results such as passivation were not satisfactory; however, the Ni-C composite still displayed less than $10^{-4}$ $A/cm^2$ passivation current density. Passivation by an anodizing technique could yield better corrosion resistance in the Ni-C composite, approaching that of pure Ni plating. Surface resistivity of pure Ni after passivation was increased by about 8% compared to pure Ni. On the other hand, the surface resistivity of the Ni-C composite with 13 at.% C content was increased by only 1%. It can be confirmed that the metal plate electrodeposited Ni-C composite can be applied as a bipolar plate for fuel cells and redox flow batteries.

Preparation of Bipolar Plate for Fuel Cell Using CNT/Graphite Nano-Composite

  • Choi, Jong-Min;Kim, Tae-Jin;Hyun, Min-Soo;Peck, Dong-Hyun;Kim, Sang-Kyung;Lee, Byung-Rok;Park, Jong-Soo;Jung, Doo-Hwan
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.181-187
    • /
    • 2005
  • Bipolar plates require some specific properties such as electrical conductivity, mechanical strength, chemical stability, and low permeability for the fuel cell application. This study investigated the effects of carbon nanotube (CNT) contents and process conditions of hot press molding on the electrical and physical properties using CNT 3~7 wt% added graphite nano-composites in the curing temperatures range of 140~$200^{\circ}C$ and pressure of 200~300 kg/$cm^2$. Bulk density, hardness and flexural strength increased with increasing CNT contents, curing pressure and temperature. With the 7 wt% CNT added noncomposite, the electrical resistance improved by 30% and the flexural strength increased by 25% as compared to that without CNT at the temperature of $160^{\circ}C$ and pressure of 300 kg/$cm^2$. These properties were close to the DOE reference criteria as bulk resistance of 13 $m{\Omega}cm$ and tensile strength of 515 kg/$cm^2$.

  • PDF