• Title/Summary/Keyword: metal activated carbon

Search Result 168, Processing Time 0.022 seconds

Biochemical Characterization of Protease Produced by Cordyceps nutans

  • Kim, Seon Ah;Kim, Mi-Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.44 no.4
    • /
    • pp.216-221
    • /
    • 2012
  • The fruiting body of Cordyceps is derived from the pupa or larva of insects infected by the entomopathogenic fungi Cordyceps. The fruiting body has been used as an anti-cancer and anti-inflammatory ingredient in traditional Chinese medicine. The biochemical characteristics of protease isolated from Cordyceps nutans were investigated in this study. The culturing period for production of protease by C. nutans was 10days. The acidity was pH 7.0, and the temperature was $25^{\circ}C$. The carbon and nitrogen sources for the production of the protease were glucose and yeast extract, respectively. The ratio of C/N was 2% glucose and 0.6% yeast extract. 0.06% $CuSO_4$ was used as the inorganic salt. The investigation into the acidity of the protease produced by C. nutans revealed that the optimal pH and temperature were pH 7.0 and $30^{\circ}C$. The stability of the protease was shown as pH 6.0~9.0 and $30{\sim}50^{\circ}C$. The investigation into the influence of the metal ions on the enzyme activation of C. nutans revealed that it was inhibited in $ZnSO_4$ and activated in $FeSO_4$.

  • PDF

Treatment of the Wastewater of High Surfactant Concentration by GAC GAC Adsorption (GAC에 의한 고농도 계면활성제 폐수의 흡착처리)

  • Kim, Hag-Seong;Lee, Jin-Phil;Han, Hoon-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.59-65
    • /
    • 1999
  • For a cosmetic plant wastewater containing surfactants of high concentration, adsorption treatment by granular activated carbon(GAC) having different pore size distribution was studied. Three sorts GACs were used and regenerated afterwards with methanol. Experiments were composed of batch process and column test for both virgin and regenerated GACs. Following conclusions were drawn from the study: Methylene blue activating substance(MBAS) adsorption data from the batch tests for three GACs are described well by BET isotherm and Freundich isotherm. Simulation with the BET isotherm shows that maximum adsorption appears to be affected not only by specific surface area but also by pore size distribution. Maximum adsorption from the BET isotherm for MBAS appears to diminish as the number of reactivation increases. The diminishing ratio of maximum adsorption appears to decrease as the pore size decreases. Recovery ratio of the methanol by vacuum evaporation from the spent methanol ranges from 95% to 97%.

Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration: A review

  • Yaqub, Muhammad;Lee, Seung Hwan
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.363-375
    • /
    • 2019
  • Micellar-enhanced ultrafiltration (MEUF) is a surfactant-based separation technique and has been investigated for the removal of heavy metals from wastewater. The performance of heavy metals removal from wastewater through MEUF relies on membrane characteristics, surfactant properties, various operational parameters including operating pressure, surfactant and heavy metal concentration, pH of the solution, temperature, and presence of dissolved solutes and salts. This study presents an overview of literature related to MEUF with respect to the all significant parameters including membranes, surfactants, operating conditions and MEUF hybrid processes. Moreover, this study illustrates that MEUF is an adaptable technique in various applications. Nowadays water contamination caused by heavy metals has become a serious concern around the globe. MEUF is a significant separation technique in wastewater treatment that should be acknowledged, for the reason that removal of heavy metals contamination even at lower concentrations becomes achievable, which is evidently made known in the presented review. Hybrid processes presented the better results as compared to MEUF. Future studies are required to continue the experimental work with various combinations of surfactant and heavy metals, and to investigate for the treatment of concentrated solutions, as well as for real industrial wastewater.

Fabrication of Metal-biochar Composite through CO2 Assisted Co-pyrolysis of Chlorella and Red Mud and Its Application for Persulfate Activation (녹조류와 적니의 이산화탄소환경 공동열분해를 통한 탄소-철 복합체 생성 및 과황산염 활성화를 통한 수중 염료 제거)

  • Jang, Hee-Jin;Kwon, Gihoon;Yoon, Kwangsuk;Song, Hocheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • The common algae and industrial waste, chlorella and red mud, were co-pyrolyzed in carbon dioxide condition to fabricate iron-biochar composite. In order to investigate the direct effect of chlorella and red mud in the syngas generation and the property of biochar, experiments were performed using mixture samples of chlorella and red mud. The evolution of flammable gasses (H2, CH4, CO) was monitored during pyrolysis. The produced biochar composite was employed as a catalyst for persulfate activation for methylene blue removal. BET analysis indicated that the iron-biochar composite mainly possessed meso- and macropores. The XRD analysis revealed that hematite (Fe2O3) contained in red mud was transformed to Fe3O4 during co-pyrolysis. The composite effectively activated persulfate and removed methylene blue. Among the composite samples, the composite fabricated from the mixture composed of 1:2 chlorella:red mud showed the best performance in syngas generation and methylene blue removal.

Adsorption Characteristics of Cd, Cu, Pb and Zn from Aqueous Solutions onto Reed Biochar

  • Choi, Ik-Won;Kim, Jae-Hoon;Lee, Soo-Hyung;Lee, Jae-Kwan;Seo, Dong-Cheol;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.489-494
    • /
    • 2016
  • Carbon-based sorbents such as biochar and activated carbon have been proven to be cost-effective in removing pollutants containing heavy metals from wastewater. The aim of this study was using batch experiment to evaluate the adsorption characteristics of heavy metals in single-metal conditions onto reed biochar for treating wastewater containing heavy metals. The removal rates of heavy metals were in the order of Pb > $Cu{\fallingdotseq}Cd{\fallingdotseq}Zn$, showing the adsorption efficiency of Pb was higher than the other heavy metals. Freundlich and Langmuir adsorption isotherms were used to model the equilibrium adsorption data obtained from adsorption of Pb on reed biochar. For reed biochar, the Langmuir model provided a slightly better fit than the Freundlich model. Lead was observed on the biochar surface after adsorption by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The main functional groups of reed biochar were aromatic carbons. Overall, the results suggested that reed biochar could be useful adsorbent for treating wastewater containing Pb.

Utilization of Zeolite in Waste Water Treatment. (폐수처리제(廢水處理劑)로서의 Zeolite의 이용(利用))

  • Lee, Jeon-Sig;Lee, Jyung-Jae;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.2
    • /
    • pp.46-52
    • /
    • 1987
  • This study of adsorption and column percolation was conducted to examine the utilization of natural zeolite for the removal of heavy metals from waste water to compare with that of absorption activated carbon. The adsorption of heavy metals by natural zeolite was conformed to the Freundlich isotherm (1/n values: $0.12{\sim}0.45$, K values: $18.77{\sim}59.48$) and natural zeolite was turned out to be an effective adsorbent of heavy metals. At the same particle size and percolation velocity, zeolite adsorbed a greater amount of heavy metals was adsorbed on natural zeolite than activated carbon. The smaller the particle size, the more heavy metals that were adsorbed. It was postulated that the most effective size as an adsorbent of heavy metals from waste water ranged from 0.5 to 2.0mm. The slower the percolation velocity that of the heavy metal solution in column, the more heavy metals were adsorbed. Natural zeolite in a single solution adsorbed more heavy metals than that in mixed solution, and the order of the adsorption amount on natural zeolite was Cu>Zn>Cd.

  • PDF

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

The Adsorption Characteristics by the Optimun Activation Process of PAN-based Carbon Fiber and SO2 Adsorption Characteristics by the Impregnated Nanoparticles (PAN계 ACF의 최적 활성화 공정에 따른 흡착특성과 나노입자 첨착에 의한 SO2 흡착특성)

  • Lee, Jin-Jae;Kim, Young-Chai
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.532-538
    • /
    • 2006
  • The carbonization and activation conditions for the PAN-based ACF of various grade were investigated to obtain the optimun activation condition with high surface area. And the surface properties and the absorption performance of toxic gas for terror were examined toward the PAN-ACF with the highest surface area. In the test results the surface area increased with increase of the activation temperature, but decreased with increase of the carbonization temperature. After carbonization condition ($900^{\circ}C$-15min) and activation condition ($900^{\circ}C$-30 min), we got the ACF with the highest surface area of $1204m^2/g$. In the absorption test of iodine and toxic gas for terror, this ACF showed more excellent absorption performance than the existing carbon-based adsorbent. Also, in order to give the function characteristic for a selective absorption, the stable nanoparticles of the Ag, Pt, Cu, Pd were prepared and impregnated on the PAN-based ACF in replacement of the existing method supporting metal catalysis. And were analyzed the surface characteristics and the $SO_{2}$ adsorption characteristics. In the $SO_{2}$ absorption performance test of the PAN-ACF with the impregnated nanoparticles, it wasn't change breakthrough time of Ag, Pt, Cu nanoparticle supported the PAN-ACF comparing with breakthrough time (326 sec) of the non supported PAN-ACF but Pd nanoparticle supported the PAN-ACF achieved excellent $SO_{2}$ absorption performance which has break-through time 925 sec.

Synthesis Study of CF$_3$I and $C_2$F$_{5}I$ from Halon-1301 (하론-1301로부터 CF$_3$I와 $C_2$F$_{5}I$ 의 합성)

  • 김재덕;임종성;이윤우;이윤용
    • Fire Science and Engineering
    • /
    • v.16 no.3
    • /
    • pp.32-38
    • /
    • 2002
  • The synthesis of $CF_3$I and $C_2F_5I from $CF_3Br$ was studied for the reuse of $CF_3Br$ which is abolished to save the ozone layer of the earth. Reaction experiments were carried out in experimental scale synthesis equipment with catalysts, such as CuI, Kl, $K_2$$CO_3$, KF metal salt/active carbon and alumina support at $400~600^{\circ}C$. Main products of reaction were $CF_3i$ and $C_2F_5I$ with small amounts of $C_2F_5I$, $CF_4$, $CF_2Br_2$ by-products. 7.5wt% KI and $K_2CO_3$over activated carbon catalysts show the highest yield of $CF_3$I and 7.5wt% CuI over alumina catalysts show the highest yield of $C_2F_5i$. And optimal reaction temperature was about $500^{\circ}C$.

Trend and Future Strategy of Ammonia Gas Recovery based on Adsorption from Livestock Fields (축산현장에서 발생된 암모니아 기체의 흡착기반 회수 동향 및 향후 전략)

  • Sangyeop Chae;Kwangmin Ryu;Sang-hun Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.45-53
    • /
    • 2023
  • This study discussed the trend and future strategy of adsorption technology R&D to effectively recover ammonia emitted from the livestock fields. A proper ammonia adsorbent should incorporate acidic or hydrogen bonding functional groups on the surface, as well as a high specific surface area and a good surface structure appropriate for ammonia adsorption. Activated carbon and minerals such as zeolite have widely been used as ammonia adsorbents, but their adsorption effects are generally low, so any improvement through surface modification should be necessary. For example, incorporation of metal chloride included in a porous adsorbent can promote ammonia adsorption effectiveness. Recently, new types of adsorbents such as MOFs (Metal-Organic Frameworks) and POPs (Porous Organic Polymers) have been developed and utilized. They have shown very high ammonia adsorption capacity because of adjustable and high specific surface area and porosity. In addition, Prussian Blue exhibited high ammonia adsorption and desorption performance and selectivity. This looks relatively advantageous in relation to the recovery of ammonia from livestock waste discharge. In the future, further research should be made to evaluate ammonia adsorption/desorption efficiency and purity using various adsorbents under conditions suitable for livestock sites. Also, effective pre- and/or post-treatment processes should be integrated to maximize ammonia recovery.