• Title/Summary/Keyword: metal accumulation

Search Result 408, Processing Time 0.028 seconds

Influence of Competing Ions and Metabolic Inhibitors on Heavy Metal Accumulation in the Cell of Heavy Metal-Tolerant Microorganisms (중금속내성균의 중금속 축적에 미치는 경쟁이온 및 대사저해제의 영향)

  • Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.142-148
    • /
    • 1997
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri possessing the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wastewaters polluted with various heavy metals. The effect of competing ions and metabolic inhibitors on heavy metal accumulation in the cells was investigated. Heavy metal accumulation into cells was drastically decreased in the presence of competing cation, $Al^{3+}$, and also decreased, at a lesser extent, in the presence of competing anions, $CO_3\;^{2-}$ and $PO_4\;^{2-}$. But heavy metal accumulation was not influenced generally in the presence of the other rations and anions. The accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was remarkably decreased in the presence of metabolic inhibitors, but the accumulation of Pb by Pb-tolerant microorganism was little affected in the presence of metabolic inhibitors. These results suggested that the accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was concerned with the biological activity depending on energy, and the accumulation of Pb by Pb-tolerant microorganism depended on not the biological activity but the physical adsorption on the cell surface. Each heavy metal-tolerant microorganism also exhibited some ability to accumulate the other heavy metals in solution containing equal concentrations of cadmium, lead, zinc and copper, when measured at 48 hours after inoculation of the microorganisms, but the accumulation rates were somewhat low as compared to the accumulation rates of heavy metal fitting to each tolerance. These results suggested that the accumulation of each heavy metal by each heavy metal-tolerant microorganism was a selective accumulation process.

  • PDF

Effect of External Factors on Heavy Metal Accumulation in the Cell of Heavy Metal-Tolerant Microorganisms (중금속내성균의 중금속 축적에 미치는 외부요인의 영향)

  • Cho, Ju-Sik;Lee, Hong-Jae;Lee, Won-Kyu;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.124-129
    • /
    • 1997
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri possessing the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewater and mine wastewater polluted with various heavy metals. The effect of several external factors, such as temperature, pH and heavy metal compounds on heavy metal accumulation in the cells was investigated. The amount of heavy metal accumulation into cells according to the kind of heavy metal compound was slightly increased in the case of the heavy metal compound with -nitrate group, but generally, there is little change according to the kind of compound in the amount of heavy metal accumulation. The amount of heavy metal accumulation according to the precultured time was increased in the case of the cell precultured for 24 hours, but generally the precultured time did not affect to the amount of heavy metal accumulation. Heavy metal accumulation into cells was affected by several external factors, such as temperature and pH. The optimum temperature and optimum pH of the accumulation of heavy metal into cells were $20{\sim}37^{\circ}C$ and pH $6{\sim}8$, respectively. By increasing the concentration of each heavy metal-tolerant microorganism in the solution, the total amount of heavy metal accumulated was increased, whereas the amount of heavy metal accumulated per cell(mg, heavy metal/g, dry cells) was decreased. These results indicated that the amount of heavy metal accumulated was not proportional to the concentration of microorganisms.

  • PDF

Heavy Metal Accumulation in Cell of Heavy Metal-Tolerant Bacteria by Some Physical and Chemical Treatments (물리화학적 전처리에 의한 중금속 내성세균의 균체내 중금속 축적 변화)

  • Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.311-319
    • /
    • 1997
  • Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri which possessed the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wasewaters polluted with various heavy metals. Metal binding sites in the cells were investigated by extracting the components of the cells through pretreatments with hot water, acid, alkli, chloroform-methanol or chloroform-methanol/concentrated alkali. The heavy metal accumulation was drastically decreased by pretreatment with alkali or chloroform-methanol/concentrated alkali, but the heavy metal accumulation was not changed by pretreatment with chloroform-methanol. The amount of heavy metal accumulation was remarkably decreased by decreasing crude protein remaining in the cell. These results suggested that proteins of cell components played an important role on the heavy metal accumulation.

  • PDF

Role of Proline Accumulation in Response to Toxic Copper in Microcystis aeruginosa

  • Park, So-Hyun;Hong, Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.189-196
    • /
    • 2001
  • The blue green alga, Microcystis aeruginosa, was found to accumulate proline under the stressful concentration of cupric ions. The changes of proline level in Microcystis aeruginosa in response to copper(Cu) have been monitored and the function of the accumulated proline was studied with respect to its effect on Cu uptake. Exposure of Microcystis aeruginosa elevated concentrations of Cu led to accumulation of fee proline depending on the concentrations of the metal in the external medium. The greater the toxicity or accumulation of the metal, the higher the amount of proline in algal cells were found. When proline was exogenously supplied prior to Cu treatment, the absorption of Cu was markedly reduced. When exogenous proline was supplied after Cu treatment, it resulted in a remarkable desorption of the adsorbed Cu immediately after the addition of proline. Pretreatment of Microcystis aeruginosa with proline counteracted with metal-induced lipid peroxidation. The results of the present study showed a protective elect of proline on metal toxicity through inhibition of lipid peroxidation and suggested that the accumulation of proline may be related to the tolerance mechanism for dealing with Cu stress.

  • PDF

A study of Heat Analysis on Track Rubber Parts (궤도고무부품의 열해석에 관한 연구)

  • Kim, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.117-122
    • /
    • 1999
  • Track rubber parts has heat built-up as long as dynamic loading is applied from running tracked vehicles. Durability is required for rubber part to sustain the heat accumulation and heat exchange between rubber-metal assembly and environmental air and ground. For this research, the track assembly was divided into four parts i.e., bottom track shoe, upper track pad, pin busing and metal structure. Three rubber parts and metal structure were modelled and analyzed with MARC package program to obtain time-temperature data which was induced form mechanical work of tracked vehicles. heat accumulation data was obtained from special experiments under the room temperature of 25$^{\circ}C\;and\;35^{\circ}C$ to simulate the actual environmental conditions. From this research, it is cleared that the environmental temperature does not affect to the heat accumulation speed in rubber parts. Also, the heat built-up mechanism was clarified from the thermo-mechanical work based on numerical analysis and experiments.

  • PDF

A Study of Heavy Metal Contents in plants from Mt. Kwang-Duk Area (광덕산 식물체의 중금속 함량에 관한 연구)

  • 이기태;최한수
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.4
    • /
    • pp.155-163
    • /
    • 1999
  • Heavy metal accumulation in living organisms through food-wed can give serious damage on physiological responses for vital activities. The initiation of heavy metal supposed to begin from the bio-accumulation of plants. To establish basic data fur heavy metal contents in plants at the area without artificial contamination, both woody and herb plants at Mt. Kwang-Duk were studied. The content of heavy metals in various organs of plants were analyzed by ICP. The range of heavy metals in plants for Al, As, Cd, Co, Cr, Cu, Fe. Mn, Pb, Se and Zn were 1.019∼257.200ppm, O∼2.929ppm, 0∼0.079ppm, 0∼0.054ppm, 0.023∼3.007ppm, 0∼1.997ppm, 2.031∼148.500ppm, 1.069∼51.320ppm, O∼126.900ppm, 0.708∼4.927ppm and 0.846∼4.949ppm, respectively. The amount of heavy metals in plants are much less than that of soil except some species. In woody plants, it was detected that the metal contents of leaves were higher than that of stems especially in case of Al and Fe with statistical significance. There were significant differences between shoots and roots of herb plants in metal content of Al, Co and Fe. Those metals have more accumulated in roots comparing with shoots. Some species of plants had shown the difference tendency of heavy metal accumulation. Generally, most species had not exceeded over twice of mean value each other, and had various difference according to the kinds of heavy metals.

  • PDF

Heavy Metal Interactions during Accumulation and Elimination of Cadmium and Copper in the Liver of Juvenile Flounder, Paralichthys olivaceus

  • Kim Seong-Gil;Kim Sang-Gyu;Kang Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.4
    • /
    • pp.295-301
    • /
    • 2002
  • Experiments were carried out to investigate the effects of metal interaction on the accumulation and elimination of Cd and Cu in the liver of flounder, Paralichthys olivaceus, exposed to sub-chronic Cd (0, 5, 10, 50, 100 ${\mu}g/L$)/Cu $(10 {\mu}g/L)$ mixture. Cd exposure resulted in an increased Cd accumulation in the liver of flounder for exposure periods and concentration, and Cd accumulation increased linearly with exposure time. Cu accumulation profiles were similar to those of Cd. Cd concentration in the liver significantly decreased at the 10th depuration period and elimination rate was $66.20\%,\;86.22\%$ in 50 and $100 {\mu}g/L$at the end of depuration periods, respectively. Although, Cu elimination was similar to Cd elimination phase, Cd elimination rate was higher than that of Cu. Co-relationship of Cd and Cu have a positive correlation coefficient r=0.8620 (P<0.001) and support the strong relationship between Cd and Cu accumulation. As increase with the Cd exposure concentration, there were significant (P<0.001) differences between Cd and Cu accumulation.

Evaluation of Heavy Metal Sources and Its Transfer and Accumulation to Crop in Agricultural Soils (농경지 토양의 중금속 오염원 및 농작물로의 중금속 전이·축적 평가)

  • Lim, Ga-Hee;Jo, Hun-Je;Park, Gyoung-Hun;Yun, Sung-Mi;Kim, Ji-In;Noh, Hoe-Jung;Kim, Hyun-Koo;Yoon, Jeong-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.3
    • /
    • pp.27-42
    • /
    • 2018
  • It is important to identify the contaminant sources and to evaluate the fate and transport of heavy metals to crops in agricultural lands. This study was conducted to evaluate metal sources and its transfer and accumulation to crop in agricultural soils. Pollution indices were calculated and multivariate analysis was performed to identify metal sources. To evaluate transfer and accumulation of metals to crops, the contents of phytoavailable metals were evaluated by using single extraction method and the correlation between metal content and soil properties was analyzed. Also the BCF was quantitatively evaluated for investigating the metal transition to each crop grown in the research area. As a result, Cr, Ni, and Co were expected to be mainly derived from geologic factors due to weathering of certain parent rocks. The content of nickel in soils of the research area was slightly higher than that of the concern level criteria based on total concentration, but the amount transferred and accumulated in the crops was actually low. Understanding the contamination characteristics by investigating the pollution sources of heavy metals and its transfer and accumulation to crops through various evaluation techniques could provide important information for proper management of the agricultural land.

Level of Heavy Metals in the Onsan Bay in Korea and Involvement of Metal Binding Protein in the Accumulation of Cadmium in Littorina brevicula

  • Paek, Soo-Min;Chung, Soohee;Lee, In-Sook
    • The Korean Journal of Ecology
    • /
    • v.22 no.2
    • /
    • pp.95-100
    • /
    • 1999
  • The heavy metal concentrations in seawater and winkles (Littorina brevicula) collected from the Onsan bay area in southeast of Korea were analyzed. The heavy metal concentrations in the seawater obtained from the most polluted site showed approximately 189. 205. and 110 fold higher cadmium, copper. and zinc concentrations, respectively. than the uncontaminated control site. The contamination levels of these metals in winkles were 11.08 - 2.35, 334.5 - 212.5, and 426.0 - 499.2$\mu\textrm{g}$ per gram dry body weight. respectively. The concentrations of all three metals in both the seawater and winkles decreased gradually with increasing distance from Daejeong stream, suggesting the stream being the major source of heavy metal input into the bay. Among the four body parts of digestive gland and gonad. gill. kidney, and remaining tissue in contaminated winkles, kidney showed the highest accumulation level of cadmium: copper and zinc, however. were more or less distributed among the four body parts. Upon gel filtration chromatography of the cytosol from the kidney of cadmium induced winkles, one cadmium peak corresponded to the elution peak of horse kidney metallothionein.

  • PDF