• 제목/요약/키워드: metaheuristic methods

검색결과 43건 처리시간 0.016초

Robust optimum design of MTMD for control of footbridges subjected to human-induced vibrations via the CIOA

  • Leticia Fleck Fadel Miguel;Otavio Augusto Peter de Souza
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.647-661
    • /
    • 2023
  • It is recognized that the installation of energy dissipation devices, such as the tuned mass damper (TMD), decreases the dynamic response of structures, however, the best parameters of each device persist hard to determine. Unlike many works that perform only a deterministic optimization, this work proposes a complete methodology to minimize the dynamic response of footbridges by optimizing the parameters of multiple tuned mass dampers (MTMD) taking into account uncertainties present in the parameters of the structure and also of the human excitation. For application purposes, a steel footbridge, based on a real structure, is studied. Three different scenarios for the MTMD are simulated. The proposed robust optimization problem is solved via the Circle-Inspired Optimization Algorithm (CIOA), a novel and efficient metaheuristic algorithm recently developed by the authors. The objective function is to minimize the mean maximum vertical displacement of the footbridge, whereas the design variables are the stiffness and damping constants of the MTMD. The results showed the excellent capacity of the proposed methodology, reducing the mean maximum vertical displacement by more than 36% and in a computational time about 9% less than using a classical genetic algorithm. The results obtained by the proposed methodology are also compared with results obtained through traditional TMD design methods, showing again the best performance of the proposed optimization method. Finally, an analysis of the maximum vertical acceleration showed a reduction of more than 91% for the three scenarios, leading the footbridge to acceleration values below the recommended comfort limits. Hence, the proposed methodology could be employed to optimize MTMD, improving the design of footbridges.

Intelligent prediction of engineered cementitious composites with limestone calcined clay cement (LC3-ECC) compressive strength based on novel machine learning techniques

  • Enming Li;Ning Zhang;Bin Xi;Vivian WY Tam;Jiajia Wang;Jian Zhou
    • Computers and Concrete
    • /
    • 제32권6호
    • /
    • pp.577-594
    • /
    • 2023
  • Engineered cementitious composites with calcined clay limestone cement (LC3-ECC) as a kind of green, low-carbon and high toughness concrete, has recently received significant investigation. However, the complicated relationship between potential influential factors and LC3-ECC compressive strength makes the prediction of LC3-ECC compressive strength difficult. Regarding this, the machine learning-based prediction models for the compressive strength of LC3-ECC concrete is firstly proposed and developed. Models combine three novel meta-heuristic algorithms (golden jackal optimization algorithm, butterfly optimization algorithm and whale optimization algorithm) with support vector regression (SVR) to improve the accuracy of prediction. A new dataset about LC3-ECC compressive strength was integrated based on 156 data from previous studies and used to develop the SVR-based models. Thirteen potential factors affecting the compressive strength of LC3-ECC were comprehensively considered in the model. The results show all hybrid SVR prediction models can reach the Coefficient of determination (R2) above 0.95 for the testing set and 0.97 for the training set. Radar and Taylor plots also show better overall prediction performance of the hybrid SVR models than several traditional machine learning techniques, which confirms the superiority of the three proposed methods. The successful development of this predictive model can provide scientific guidance for LC3-ECC materials and further apply to such low-carbon, sustainable cement-based materials.

Hybrid Vision Correction Algorithm의 개발 (Development of Hybrid Vision Correction Algorithm)

  • 류용민;이의훈
    • 한국산학기술학회논문지
    • /
    • 제22권1호
    • /
    • pp.61-73
    • /
    • 2021
  • 메타휴리스틱 탐색법은 주어진 정보의 부족 및 시간의 제약을 받는 상황에서 다양한 목적함수를 가진 문제를 해결하기 위해 개발되었다. 본 연구에서는 기존의 최적화 알고리즘인 Vision Correction Algorithm(VCA)의 성능을 강화한 Hybrid Vision Correction Algorithm(HVCA)을 개발하였다. HVCA는 기존의 알고리즘의 성능을 개선하기 위해 두 가지 방법을 적용하였다. 첫 번째 방법으로 사용자가 입력해야 하는 매개변수를 자가적응형 매개변수로 개선하였다. 두 번째 방법으로 Exponential Bandwidth Harmony Search With Centralized Global Search(EBHS-CGS)의 CGS 구조를 HVCA에 추가하였다. CGS 구조의 추가로 인해 HVCA 내부는 CGS와 VCA의 두 가지 구조로 구성되어 있다. 두 가지 구조를 효율적으로 사용하기 위해 반복시산을 진행하면서 최적값이 나오는 구조의 선택확률을 증가시키는 방법을 적용하였다. 제안된 HVCA의 성능을 확인하기 위해 최적화 문제에 적용하고, 그 결과를 Harmony Search(HS), Improved Harmony Search(IHS) 및 VCA와 비교하여 나타내었다. 적용결과 수학문제와 공학문제에서 HVCA는 HS, IHS 및 VCA보다 최적값 및 100번의 반복실행 중 최적값을 찾는 횟수가 많았으며, 최적값에 수렴하는 반복시산횟수도 낮았다. 이를 통해 HVCA가 성능이 개선되었다는 것을 확인할 수 있었다. 제안된 HVCA는 적용한 수학문제 및 공학문제 이외에도 많은 분야에 대해 좋은 결과를 나타낼 것으로 기대된다.