• Title/Summary/Keyword: metaheuristic

Search Result 173, Processing Time 0.035 seconds

A Hybrid Metaheuristic for the Series-parallel Redundancy Allocation Problem in Electronic Systems of the Ship

  • Son, Joo-Young;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.341-347
    • /
    • 2011
  • The redundancy allocation problem (RAP) is a famous NP.complete problem that has beenstudied in the system reliability area of ships and airplanes. Recently meta-heuristic techniques have been applied in this topic, for example, genetic algorithms, simulated annealing and tabu search. In particular, tabu search (TS) has emerged as an efficient algorithmic approach for the series-parallel RAP. However, the quality of solutions found by TS depends on the initial solution. As a robust and efficient methodology for the series-parallel RAP, the hybrid metaheuristic (TSA) that is a interactive procedure between the TS and SA (simulated annealing) is developed in this paper. In the proposed algorithm, SA is used to find the diversified promising solutions so that TS can re-intensify search for the solutions obtained by the SA. We test the proposed TSA by the existing problems and compare it with the SA and TS algorithm. Computational results show that the TSA algorithm finds the global optimal solutions for all cases and outperforms the existing TS and SA in cases of 42 and 56 subsystems.

Mine Algorithm : A Metaheuristic Imitating The Action of The Human Being (Mine 알고리즘 : 인간의 행동을 모방한 메타휴리스틱)

  • Ko, Sung-Bum
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.411-426
    • /
    • 2009
  • Most of the metaheuristics are made by imitating the action of the animals. In this paper, we proposed Mine Algorithm. The Mine Algorithm is a metaheuristic that imitates the action of the human being. Speaking of search, the field in which the know-how and the heuristics of the human being are melted best is the mining industry. In the Mine Algorithm we formalize the action pattern of the human being by focusing the mine business. The Mine Algorithm uses various searching techniques fluently and shows equally good performance for broad problems. That is, it has good generality. We show the improved generality of the Mine Algorithm by the comparing experiments with the conventional metaheuristics.

Metaheuristic-reinforced neural network for predicting the compressive strength of concrete

  • Hu, Pan;Moradi, Zohre;Ali, H. Elhosiny;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.195-207
    • /
    • 2022
  • Computational drawbacks associated with regular predictive models have motivated engineers to use hybrid techniques in dealing with complex engineering tasks like simulating the compressive strength of concrete (CSC). This study evaluates the efficiency of tree potential metaheuristic schemes, namely shuffled complex evolution (SCE), multi-verse optimizer (MVO), and beetle antennae search (BAS) for optimizing the performance of a multi-layer perceptron (MLP) system. The models are fed by the information of 1030 concrete specimens (where the amount of cement, blast furnace slag (BFS), fly ash (FA1), water, superplasticizer (SP), coarse aggregate (CA), and fine aggregate (FA2) are taken as independent factors). The results of the ensembles are compared to unreinforced MLP to examine improvements resulted from the incorporation of the SCE, MVO, and BAS. It was shown that these algorithms can considerably enhance the training and prediction accuracy of the MLP. Overall, the proposed models are capable of presenting an early, inexpensive, and reliable prediction of the CSC. Due to the higher accuracy of the BAS-based model, a predictive formula is extracted from this algorithm.

Teaching-learning-based strategy to retrofit neural computing toward pan evaporation analysis

  • Rana Muhammad Adnan Ikram;Imran Khan;Hossein Moayedi;Loke Kok Foong;Binh Nguyen Le
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • Indirect determination of pan evaporation (PE) has been highly regarded, due to the advantages of intelligent models employed for this objective. This work pursues improving the reliability of a popular intelligent model, namely multi-layer perceptron (MLP) through surmounting its computational knots. Available climatic data of Fresno weather station (California, USA) is used for this study. In the first step, testing several most common trainers of the MLP revealed the superiority of the Levenberg-Marquardt (LM) algorithm. It, therefore, is considered as the classical training approach. Next, the optimum configurations of two metaheuristic algorithms, namely cuttlefish optimization algorithm (CFOA) and teaching-learning-based optimization (TLBO) are incorporated to optimally train the MLP. In these two models, the LM is replaced with metaheuristic strategies. Overall, the results demonstrated the high competency of the MLP (correlations above 0.997) in the presence of all three strategies. It was also observed that the TLBO enhances the learning and prediction accuracy of the classical MLP (by nearly 7.7% and 9.2%, respectively), while the CFOA performed weaker than LM. Moreover, a comparison between the efficiency of the used metaheuristic optimizers showed that the TLBO is a more time-effective technique for predicting the PE. Hence, it can serve as a promising approach for indirect PE analysis.

CO2 emissions optimization of reinforced concrete ribbed slab by hybrid metaheuristic optimization algorithm (IDEACO)

  • Shima Bijari;Mojtaba Sheikhi Azqandi
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.295-307
    • /
    • 2023
  • This paper presents an optimization of the reinforced concrete ribbed slab in terms of minimum CO2 emissions and an economic justification of the final optimal design. The design variables are six geometry variables including the slab thickness, the ribs spacing, the rib width at the lower and toper end, the depth of the rib and the bar diameter of the reinforcement, and the seventh variable defines the concrete strength. The objective function is considered to be the minimum amount of carbon dioxide gas (CO2) emission and at the same time, the optimal design is economical. Seven significant design constraints of American Concrete Institute's Standard were considered. A robust metaheuristic optimization method called improved dolphin echolocation and ant colony optimization (IDEACO) has been used to obtain the best possible answer. At optimal design, the three most important sources of CO2 emissions include concrete, steel reinforcement, and formwork that the contribution of them are 63.72, 32.17, and 4.11 percent respectively. Formwork, concrete, steel reinforcement, and CO2 are the four most important sources of cost with contributions of 67.56, 19.49, 12.44, and 0.51 percent respectively. Results obtained by IDEACO show that cost and CO2 emissions are closely related, so the presented method is a practical solution that was able to reduce the cost and CO2 emissions simultaneously.

A Study on the PAPR Reduction Using Phase Rotation Method Applying Metaheuristic Algorithm (Metaheuristic 알고리즘을 적용한 위상회전 기법에 의한 PAPR 감소에 관한 연구)

  • Yoo, Sun-Yong;Park, Bee-Ho;Kim, Wan-Tae;Cho, Sung-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.26-35
    • /
    • 2009
  • OFDM (Orthogonal Frequency Division Multiplexing) system is robust to frequency selective fading and narrowband interference in high-speed data communications. However, an OFDM signal consists of a number of independently modulated subcarriers and the superposition of these subcarriers causes a problem that can give a large PAPR(Peak-to-Average Power Ratio). Phase rotation method can reduce the PAPR without nonlinear distortion by multiplying phase weighting factors. But computational complexity of searching phase weighting factors is increased exponentially with the number of subblocks and considered phase factor. Therefore, a new method, which can reduce computational complexity and detect phase weighting factors efficiently, should be developed. In this paper, a modeling process is introduced, which apply metaheuristic algerian in phase rotation method and optimize in PTS (Particle Swarm Optimization) scheme. Proposed algorithm can solve the computational complexity and guarantee to reduce PAPR We analyzed the efficiency of the PAPR reduction through a simulation when we applied the proposed method to telecommunication systems.

Optimum cost design of RC columns using artificial bee colony algorithm

  • Ozturk, Hasan Tahsin;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.643-654
    • /
    • 2013
  • Optimum cost design of columns subjected to axial force and uniaxial bending moment is presented in this paper. In the formulation of the optimum design problem, the height and width of the column, diameter and number of reinforcement bars are treated as design variables. The design constraints are implemented according to ACI 318-08 and studies in the literature. The objective function is taken as the cost of unit length of the column consisting the cost of concrete, steel, and shuttering. The solution of the design problem is obtained using the artificial bee colony algorithm which is one of the recent additions to metaheuristic techniques. The Artificial Bee Colony Algorithm is imitated the foraging behaviors of bee swarms. In application of this algorithm to the constraint problem, Deb's constraint handling method is used. Obtained results showed that the optimum value of numerical example is nearly same with the existing values in the literature.

Metaheuristics for reliable server assignment problems

  • Jang, Kil-Woong;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1340-1346
    • /
    • 2014
  • Previous studies of reliable server assignment considered only to assign the same cost of server, that is, homogeneous servers. In this paper, we generally deal with reliable server assignment with different server costs, i.e., heterogeneous servers. We formulate this problem as a nonlinear integer programming mathematically. Our problem is defined as determining a deployment of heterogeneous servers to maximize a measure of service availability. We propose two metaheuristic algorithms (tabu search and particle swarm optimization) for solving the problem of reliable server assignment. From the computational results, we notice that our tabu search outstandingly outperforms particle swarm optimization for all test problems. In terms of solution quality and computing time, the proposed method is recommended as a promising metaheuristic for a kind of reliability optimization problems including reliable sever assignment and e-Navigation system.

Comparative Study on Performance of Metaheuristics for Weapon-Target Assignment Problem (무기-표적 할당 문제에 대한 메타휴리스틱의 성능 비교)

  • Choi, Yong Ho;Lee, Young Hoon;Kim, Ji Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.441-453
    • /
    • 2017
  • In this paper, a new type of weapon-target assignment(WTA) problem has been suggested that reflects realistic constraints for sharing target with other weapons and shooting double rapid fire. To utilize in rapidly changing actual battle field, the computation time is of great importance. Several metaheuristic methods such as Simulated Annealing, Tabu Search, Genetic Algorithm, Ant Colony Optimization, and Particle Swarm Optimization have been applied to the real-time WTA in order to find a near optimal solution. A case study with a large number of targets in consideration of the practical cases has been analyzed by the objective value of each algorithm.