• Title/Summary/Keyword: metaheuristic

Search Result 173, Processing Time 0.027 seconds

Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study

  • Ghiasi, Ramin;Ghasemi, Mohammad Reza
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.561-574
    • /
    • 2018
  • In this paper, for efficiently reducing the computational cost of the model updating during the optimization process of damage detection, the structural response is evaluated using properly trained surrogate model. Furthermore, in practice uncertainties in the FE model parameters and modelling errors are inevitable. Hence, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The current work builds a framework for Probability Based Damage Detection (PBDD) of structures based on the best combination of metaheuristic optimization algorithm and surrogate models. To reach this goal, three popular metamodeling techniques including Cascade Feed Forward Neural Network (CFNN), Least Square Support Vector Machines (LS-SVMs) and Kriging are constructed, trained and tested in order to inspect features and faults of each algorithm. Furthermore, three wellknown optimization algorithms including Ideal Gas Molecular Movement (IGMM), Particle Swarm Optimization (PSO) and Bat Algorithm (BA) are utilized and the comparative results are presented accordingly. Furthermore, efficient schemes are implemented on these algorithms to improve their performance in handling problems with a large number of variables. By considering various indices for measuring the accuracy and computational time of PBDD process, the results indicate that combination of LS-SVM surrogate model by IGMM optimization algorithm have better performance in predicting the of damage compared with other methods.

Improvement of Search Efficiency in Optimization Algorithm using Self-adaptive Harmony Search Algorithms (매개변수 자가적응 화음탐색 알고리즘의 성능 비교를 통한 최적해 탐색 효율 향상)

  • Choi, Young Hwan;Lee, Ho Min;Yoo, Do Guen;Kim, Joong Hoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In various engineering fields, determining the appropriate parameter set is a cumbersome and difficult task when solving optimization problems. Despite the appropriate parameter setting through parameter sensitivity analysis, there are limits to evaluating whether the parameters are appropriate for all optimization problems. For this reason, kinds of a Self-adaptive Harmony searches have been developed to solve various engineering problems by the appropriate setting of algorithm's own parameters according to the problem. In this study, various types of Self-adaptive Harmony searches were investigated and the characteristics of optimization were categorized. Six algorithms with a differentiation of optimization process were applied and compared with not only the mathematical optimization problem, but also the engineering problem, which has been applied widely in the algorithm performance comparisons. The performance of each algorithm was compared, and the statistical performance indicators were used to evaluate the application results quantitatively.

Analysis of cable structures through energy minimization

  • Toklu, Yusuf Cengiz;Bekdas, Gebrail;Temur, Rasim
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.749-758
    • /
    • 2017
  • In structural mechanics, traditional analyses methods usually employ matrix operations for obtaining displacement and internal forces of the structure under the external effects, such as distributed loads, earthquake or wind excitations, and temperature changing inter alia. These matrices are derived from the well-known principle of mechanics called minimum potential energy. According to this principle, a system can be in the equilibrium state only in case when the total potential energy of system is minimum. A close examination of the expression of the well-known equilibrium condition for linear problems, $P=K{\Delta}$, where P is the load vector, K is the stiffness matrix and ${\Delta}$ is the displacement vector, it is seen that, basically this principle searches the displacement set (or deformed shape) for a system that minimizes the total potential energy of it. Instead of using mathematical operations used in the conventional methods, with a different formulation, meta-heuristic algorithms can also be used for solving this minimization problem by defining total potential energy as objective function and displacements as design variables. Based on this idea the technique called Total Potential Optimization using Meta-heuristic Algorithms (TPO/MA) is proposed. The method has been successfully applied for linear and non-linear analyses of trusses and truss-like structures, and the results have shown that the approach is much more successful than conventional methods, especially for analyses of non-linear systems. In this study, the application of TPO/MA, with Harmony Search as the selected meta-heuristic algorithm, to cables net system is presented. The results have shown that the method is robust, powerful and accurate.

Field Application of Least Cost Design Model on Water Distribution Systems using Ant Colony Optimization Algorithm (개미군집 최적화 알고리즘을 이용한 상수도관망 시스템의 최저비용설계 모델의 현장 적용)

  • Park, Sanghyuk;Choi, Hongsoon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.413-428
    • /
    • 2013
  • In this study, Ant Colony Algorithm(ACO) was used for optimal model. ACO which are metaheuristic algorithm for combinatorial optimization problem are inspired by the fact that ants are able to find the shortest route between their nest and food source. For applying the model to water distribution systems, pipes, tanks(reservoirs), pump construction and pump operation cost were considered as object function and pressure at each node and reservoir level were considered as constraints. Modified model from Ostfeld and Tubaltzev(2008) was verified by applying 2-Looped, Hanoi and Ostfeld's networks. And sensitivity analysis about ant number, number of ants in a best group and pheromone decrease rate was accomplished. After the verification, it was applied to real water network from S water treatment plant. As a result of the analysis, in the Two-looped network, the best design cost was found to $419,000 and in the Hanoi network, the best design cost was calculated to $6,164,384, and in the Ostfeld's network, the best design cost was found to $3,525,096. These are almost equal or better result compared with previous researches. Last, the cost of optimal design for real network, was found for 66 billion dollar that is 8.8 % lower than before. In addition, optimal diameter for aged pipes was found in this study and the 5 of 8 aged pipes were changed the diameter. Through this result, pipe construction cost reduction was found to 11 percent lower than before. And to conclusion, The least cost design model on water distribution system was developed and verified successfully in this study and it will be very useful not only optimal pipe change plan but optimization plan for whole water distribution system.

Bin Packing Algorithm for Equitable Partitioning Problem with Skill Levels (기량수준 동등분할 문제의 상자 채우기 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.209-214
    • /
    • 2020
  • The equitable partitioning problem(EPP) is classified as [0/1] binary skill existence or nonexistence and integer skill levels such as [1,2,3,4,5]. There is well-known a polynomial-time optimal solution finding algorithm for binary skill EPP. On the other hand, tabu search a kind of metaheuristic has apply to integer skill level EPP is due to unknown polynomial-time algorithm for it and this problem is NP-hard. This paper suggests heuristic greedy algorithm with polynomial-time to find the optimal solution for integer skill level EPP. This algorithm descending sorts of skill level frequency for each field and decides the lower bound(LB) that more than the number of group, packing for each group bins first, than the students with less than LB allocates to each bin additionally. As a result of experimental data, this algorithm shows performance improvement than the result of tabu search.

Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm

  • ATMACA, Barbaros;DEDE, Tayfun;GRZYWINSKI, Maksym
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.853-862
    • /
    • 2020
  • In recent years, due to the many advantages cable-stayed bridges have often constructed in medium and long span. These advantages can be listed as an aesthetically pleasing appearance, economic and easy construction, etc. The main structural elements of cable-stayed bridges are listed as deck, pylon, cables and foundation. Perhaps one of the most vital and expensive of these structural elements is stay-cables. Stay-cables ensure the allowable displacement and distribution of bending moments along the bridge deck with prestressing force. Therefore the optimum design of the stay-cables and prestressing force are very important in achieving the performance expected from the cable-stayed bridges. This paper aims to obtain the stay-cables size and prestressing force optimization of the cable-stayed bridge. For this purpose, single pylon and fan type cable configuration Manavgat Cable-Stayed Bridge was selected as an example. The three dimensional (3D) finite element model (FEM) of the bridge was created with SAP2000. Analysis of the 3D FEM of the bridge was conducted under the different combined effects of the self-weight of the structural element, prestressing force of stay-cable and live load. Stay-cable stress and deck displacement were taken into account as constraints for the optimization problem. To optimize this existing bridge a metaheuristic algorithm named Jaya was used in the optimization process. 3D FEM of the selected bridge was repeatedly analyzed by using Open Applicable Programming Interface (OAPI) properties of SAP2000. To carry out the optimization process the developed program which integrates the Jaya algorithm and the required codes for calling SAP2000 is coded in MATLAB. At the end of the study, the total weight of the stay-cables was reduced more than 40% according to existing stay cables under loads taken into account.

An Automatic Rhythm and Melody Composition System Considering User Parameters and Chord Progression Based on a Genetic Algorithm (유전알고리즘 기반의 사용자 파라미터 설정과 코드 진행을 고려한 리듬과 멜로디 자동 작곡 시스템)

  • Jeong, Jaehun;Ahn, Chang Wook
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.204-211
    • /
    • 2016
  • In this paper, we propose an automatic melody composition system that can generate a sophisticated melody by adding non-harmony tone in the given chord progression. An overall procedure consists of two steps, which are the rhythm generation and melody generation parts. In the rhythm generation part, we designed new fitness functions for rhythm that can be controlled by a user setting parameters. In the melody generation part, we designed new fitness functions for melody based on harmony theory. We also designed evolutionary operators that are conducted by considering a musical context to improve computational efficiency. In the experiments, we compared four metaheuristics to optimize the rhythm fitness functions: Simple Genetic Algorithm (SGA), Elitism Genetic Algorithm (EGA), Differential Evolution (DE), and Particle Swarm Optimization (PSO). Furthermore, we compared proposed genetic algorithm for melody with the four algorithms for verifying performance. In addition, composition results are introduced and analyzed with respect to musical correctness.

GRASP Algorithm for Dynamic Weapon-Target Assignment Problem (동적 무장할당 문제에서의 GRASP 알고리즘 연구)

  • Park, Kuk-Kwon;Kang, Tae Young;Ryoo, Chang-Kyung;Jung, YoungRan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.856-864
    • /
    • 2019
  • The weapon-target assignment (WTA) problem is a matter of effectively allocating weapons to a number of threats. The WTA in a rapidly changing dynamic environment of engagement must take into account both of properties of the threat and the weapon and the effect of the previous decision. We propose a method of applying the Greedy Randomized Adaptive Search Procedure (GRASP) algorithm, a kind of meta-heuristic method, to derive optimal solution for a dynamic WTA problem. Firstly, we define a dynamic WTA problem and formulate a mathematical model for applying the algorithm. For the purpose of the assignment strategy, the objective function is defined and time-varying constraints are considered. The dynamic WTA problem is then solved by applying the GRASP algorithm. The optimal solution characteristics of the formalized dynamic WTA problem are analyzed through the simulation, and the algorithm performance is verified via the Monte-Carlo simulation.

Design of a Ship Backbone Network for Effective Performance and Construct Cost (효율적인 네트워크의 구축 비용 및 성능을 고려한 선박 백본 네트워크의 설계기법)

  • Kim, Hye-Jin;Tak, Sung-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.479-482
    • /
    • 2011
  • This paper proposes a design of a ship backbone network-based on the survival and efficiency of the ship network. Currently IEC operates the standard ship network, a standard specification "IEC 61162-410 maintains the operation of the network. IEC 61162-410 offers a high stability of the ship network by using terminal equipment. But current studies are incomplete because it has been assumed that the ship's network will operate at double its current capacity. This paper analyzes the double ship backbone topology for an organization and then will summarise the minimum costs required to implement the ship backbone topology using an ILP. Also, we present an effective traffic assignment technique that uses an ILP, metaheuristic, heuristic algorism-based underlying the ship backbone network. The results by experimenting the design of the network confirmed a greter efficiency, stability and cost-effectiveness of the ship network.

  • PDF

Method that determining the Hyperparameter of CNN using HS algorithm (HS 알고리즘을 이용한 CNN의 Hyperparameter 결정 기법)

  • Lee, Woo-Young;Ko, Kwang-Eun;Geem, Zong-Woo;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • The Convolutional Neural Network(CNN) can be divided into two stages: feature extraction and classification. The hyperparameters such as kernel size, number of channels, and stride in the feature extraction step affect the overall performance of CNN as well as determining the structure of CNN. In this paper, we propose a method to optimize the hyperparameter in CNN feature extraction stage using Parameter-Setting-Free Harmony Search (PSF-HS) algorithm. After setting the overall structure of CNN, hyperparameter was set as a variable and the hyperparameter was optimized by applying PSF-HS algorithm. The simulation was conducted using MATLAB, and CNN learned and tested using mnist data. We update the parameters for a total of 500 times, and it is confirmed that the structure with the highest accuracy among the CNN structures obtained by the proposed method classifies the mnist data with an accuracy of 99.28%.