• Title/Summary/Keyword: metaconcrete

Search Result 1, Processing Time 0.015 seconds

Theoretical and numerical analysis of bandgap characteristics and vibration attenuation of metaconcrete

  • En Zhang;Hai-Xiang Zhao;Guo-Yun Lu;Peng-Cheng Chen;Hui-Wei Yang
    • Computers and Concrete
    • /
    • v.34 no.5
    • /
    • pp.519-534
    • /
    • 2024
  • Metaconcrete is a relatively new concept of concrete where traditional aggregates are partially replaced by resonant aggregates which consist of solid core coated with a relatively soft material. In this research, a mass-spring-mass analytical simplified model is used to predict the bandgap characteristics of metaconcrete firstly, then the bandgap characteristics of metaconcrete unit cell are numerically investigated by using finite element software COMSOL Multiphysics, the numerical model is built and verified by the analytical solution in terms of predicting bandgap frequency region. The effect of the parameters such as the modulus of coating, the density and radius of heavy core and resonant aggregate volume fraction on the characteristics of bandgap are studied based on validated finite element model. The vibration attenuation property of metaconcrete slab is studied by using the finite element code LS-DYNA and the effect of the parameters such as the modulus of coating, the density and radius of heavy core and resonant aggregate volume fraction. Metaconcrete slab exhibit prominent vibration attenuation capacity in the predicted bandgap. Finally, a frequency sweeping experiment is carried out to verify the theoretical model. The experimental results show that metaconcrete specimens exhibit excellent vibration attenuation ability in the predicting bandgap. The results can be used for designing engineered aggregates for better structural protection.