• Title/Summary/Keyword: metacognitive strategy

Search Result 52, Processing Time 0.016 seconds

Exploring the Components and Functions of Scaffolding in Open Inquiry through Factor Analysis (요인 분석을 통한 개방적 탐구의 스캐폴딩 요소 및 기능 탐색)

  • Park, Jaeyong;Lee, Kiyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.7
    • /
    • pp.1204-1221
    • /
    • 2012
  • The purpose of this research was to identify the components of scaffolding in open inquiry and to explore the functions of teachers' scaffolding, which is necessary to support students' open inquiry. In order to identify scaffolding components, at first, we conducted a survey using a questionnaire on what students think about open inquiry on 110 students who performed open inquiry in two middle schools, and then carried out factor analysis based on the survey results. It was attempted to investigate students' perception through focus group interviews corresponding to scaffolding components that were identified through factor analysis. Also, we examined teachers' empirical view of scaffolding functions in open inquiry through in-depth interviews with four teachers. The results of exploratory factor analysis revealed that there were five scaffolding components of open inquiry: motivation, planning, strategy, environment and participation. The results of focus group interviews showed that students experienced difficulties in planning, strategy, environment and participation components, except for motivation component. In particular, students asked for support to strengthen the participation component, which means recognizing their role, active participation and collaboration with peers. Meanwhile, the results of in-depth interviews with teachers showed that teachers' empirical views of scaffolding function in open inquiry were categorized as cognitive (conceptual, metacognitive), emotional (motivational, arbitrative) and strategic. Interviewed teachers preferred the strategic scaffolding and cognitive scaffolding to the emotional scaffolding. Based on the results, we also discussed the implications for performing open inquiry effectively.

The Relationship between Learners' Epistemological Beliefs About the Nature of Physics Knowledge and Physics Knowing During Conceptual Change in Mechanical Energy (학습자의 역학적 에너지에 대한 개념변화 중에 살펴본 물리지식과 앎에 대한 인식론적 신념간의 관계)

  • Moon, Seong-Sook;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.499-518
    • /
    • 2004
  • This study focused on research that illustrates the important interplay between learners' epistemological beliefs about science knowledge, physics textbook knowledge and knowing physics in the classroom. Also this study investigated learners' conceptual changes on the value of mechanical energy. To explore these topics, six sophomores were chosen as participants. Three categories were introduced to classify how participants' understanding of the nature of science knowledge, physics textbook knowledge has been linked with epistemological beliefs of knowing physics. The three categories were (1)receiving physics knowledge as authority, (2)receiving physics knowledge as the perception of teacher's role and (3)understanding physics knowledge as the perception that science knowledge is a product of a variety of human ideas. These categories were also concerned with construction of individual conceptions of mechanical energy. The participants who understood physics knowledge as the perception that science knowledge is a product of a variety of human ideas naturally used metacognitive strategy in classroom compared to other participants. And they had scientific conceptions about the value of mechanical energy. Others who were passive in classroom had unscientific conceptions about the value of mechanical energy due to definition of energy and epistemological beliefs about the nature of science knowledge. In the process of their conceptual changes on the value of mechanical energy, it was important to understand an instrumental aspect of scientific knowledge and to think about the relation between formulae and physical phenomena.