• Title/Summary/Keyword: metabolite binding

Search Result 43, Processing Time 0.026 seconds

Transcriptome analyses of the ginseng root rot pathogens Cylindrocarpon destructans and Fusarium solani to identify radicicol resistance mechanisms

  • Li, Taiying;Kim, Jin-Hyun;Jung, Boknam;Ji, Sungyeon;Seo, Mun Won;Han, You Kyoung;Lee, Sung Woo;Bae, Yeoung Seuk;Choi, Hong-Gyu;Lee, Seung-Ho;Lee, Jungkwan
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.161-167
    • /
    • 2020
  • Background: The ascomycete fungi Cylindrocarpon destructans (Cd) and Fusarium solani (Fs) cause ginseng root rot and significantly reduce the quality and yield of ginseng. Cd produces the secondary metabolite radicicol, which targets the molecular chaperone Hsp90. Fs is resistant to radicicol, whereas other fungal genera associated with ginseng disease are sensitive to it. Radicicol resistance mechanisms have not yet been elucidated. Methods: Transcriptome analyses of Fs and Cd mycelia treated with or without radicicol were conducted using RNA-seq. All of the differentially expressed genes (DEGs) were functionally annotated using the Fusarium graminearum transcript database. In addition, deletions of two transporter genes identified by RNA-seq were created to confirm their contributions to radicicol resistance. Results: Treatment with radicicol resulted in upregulation of chitin synthase and cell wall integrity genes in Fs and upregulation of nicotinamide adenine dinucleotide dehydrogenase and sugar transporter genes in Cd. Genes encoding an ATP-binding cassette transporter, an aflatoxin efflux pump, ammonium permease 1 (mep1), and nitrilase were differentially expressed in both Fs and Cd. Among these four genes, only the ABC transporter was upregulated in both Fs and Cd. The aflatoxin efflux pump and mep1 were upregulated in Cd, but downregulated in Fs, whereas nitrilase was downregulated in both Fs and Cd. Conclusion: The transcriptome analyses suggested radicicol resistance pathways, and deletions of the transporter genes indicated that they contribute to radicicol resistance.

Open channel block of Kv1.4 potassium channels by aripiprazole

  • Park, Jeaneun;Cho, Kwang-Hyun;Lee, Hong Joon;Choi, Jin-Sung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.545-553
    • /
    • 2020
  • Aripiprazole is a quinolinone derivative approved as an atypical antipsychotic drug for the treatment of schizophrenia and bipolar disorder. It acts as with partial agonist activities at the dopamine D2 receptors. Although it is known to be relatively safe for patients with cardiac ailments, less is known about the effect of aripiprazole on voltage-gated ion channels such as transient A-type K+ channels, which are important for the repolarization of cardiac and neuronal action potentials. Here, we investigated the effects of aripiprazole on Kv1.4 currents expressed in HEK293 cells using a whole-cell patch-clamp technique. Aripiprazole blocked Kv1.4 channels in a concentration-dependent manner with an IC50 value of 4.4 μM and a Hill coefficient of 2.5. Aripiprazole also accelerated the activation (time-to-peak) and inactivation kinetics. Aripiprazole induced a voltage-dependent (δ = 0.17) inhibition, which was use-dependent with successive pulses on Kv1.4 currents without altering the time course of recovery from inactivation. Dehydroaripiprazole, an active metabolite of aripiprazole, inhibited Kv1.4 with an IC50 value of 6.3 μM (p < 0.05 compared with aripiprazole) with a Hill coefficient of 2.0. Furthermore, aripiprazole inhibited Kv4.3 currents to a similar extent in a concentration-dependent manner with an IC50 value of 4.9 μM and a Hill coefficient of 2.3. Thus, our results indicate that aripiprazole blocked Kv1.4 by preferentially binding to the open state of the channels.

Flavonoid Silibinin Increases Hair-Inductive Property Via Akt and Wnt/β-Catenin Signaling Activation in 3-Dimensional-Spheroid Cultured Human Dermal Papilla Cells

  • Cheon, Hye In;Bae, Seunghee;Ahn, Kyu Joong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.321-329
    • /
    • 2019
  • Hair loss, also known as alopecia, is a common dermatological condition of psychosocial significance; development of therapeutic candidates for the treatment of this condition is, hence, important. Silibinin, a secondary metabolite from Silybum marianum, is an effective antioxidant that also prevents various cutaneous problems. In this study, we have investigated the effect of silibinin on hair induction using three-dimensional (3D) cultured, human dermal papilla (DP) spheroids. Silibinin was found to significantly increase viability through AKT serine/threonine kinase (AKT) activation in 3D DP spheroids. This was correlated with an increase in the diameter of the 3D DP spheroids. The activation of the wingless and INT-1 (Wnt)/${\beta}$-catenin signaling pathway, which is associated with hair growth induction in the DP, was evaluated using the T cell-specific transcription factor and lymphoid enhancer-binding factor (TCF/LEF) transcription factor reporter assay; results indicated significantly increased luciferase activity. In addition, we were able to demonstrate increased expression of the target genes, WNT5a and LEF1, using quantitative real-time PCR assay. Lastly, significantly elevated expression of signature genes associated with hair induction was demonstrated in the 3D DP spheroids treated with silibinin. These results suggest that silibinin promotes proliferation and hair induction through the AKT and Wnt/${\beta}$-catenin signaling pathways in 3D DP spheroids. Silibinin can be a potential candidate to promote hair proliferation.

Ginsenoside compound K inhibits nuclear factor-kappa B by targeting Annexin A2

  • Wang, Yu-Shi;Zhu, Hongyan;Li, He;Li, Yang;Zhao, Bing;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.452-459
    • /
    • 2019
  • Background: Ginsenoside compound K(C-K), a major metabolite of ginsenoside, exhibits anticancer activity in various cancer cells and animal models. A cell signaling study has shown that C-K inhibited nuclear factor-kappa B ($NF-{\kappa}B$) pathway in human astroglial cells and liver cancer cells. However, the molecular targets of C-K and the initiating events were not elucidated. Methods: Interaction between C-K and Annexin A2 was determined by molecular docking and thermal shift assay. HepG2 cells were treated with C-K, followed by a luciferase reporter assay for $NF-{\kappa}B$, immunofluorescence imaging for the subcellular localization of Annexin A2 and $NF-{\kappa}B$ p50 subunit, coimmunoprecipitation of Annexin A2 and $NF-{\kappa}B$ p50 subunit, and both cell viability assay and plate clone formation assay to determine the cell viability. Results: Both molecular docking and thermal shift assay positively confirmed the interaction between Annexin A2 and C-K. This interaction prevented the interaction between Annexin A2 and $NF-{\kappa}B$ p50 subunit and their nuclear colocalization, which attenuated the activation of $NF-{\kappa}B$ and the expression of its downstream genes, followed by the activation of caspase 9 and 3. In addition, the overexpression of Annexin A2-K320A, a C-K binding-deficient mutant of Annexin A2, rendered cells to resist C-K treatment, indicating that C-K exerts its cytotoxic activity mainly by targeting Annexin A2. Conclusion: This study for the first time revealed a cellular target of C-K and the molecular mechanism for its anticancer activity.

Allometric analysis of tylosin tartrate pharmacokinetics in growing male turkeys

  • Pozniak, Blazej;Tikhomirov, Marta;Motykiewicz-Pers, Karolina;Bobrek, Kamila;Switala, Marcin
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.35.1-35.11
    • /
    • 2020
  • Background: Despite common use of tylosin in turkeys, the pharmacokinetic (PK) data for this drug in turkeys is limited. Within a few months of growth, PK of drugs in turkeys undergoes changes that may decrease their efficacy due to variable internal exposure. Objectives: The objective of this study was to investigate the influence of age on the PK of a single intravenous (i.v.) and oral administration of tylosin to turkeys at a dose of 10 and 50 mg/kg, respectively. Methods: Plasma drug concentrations were measured using high-performance liquid chromatography with UV detection. The PK parameters were assessed by means of non-compartmental approach and were subjected to allometric analysis. Results: During a 2.5-month-long period of growth from 1.4 to 14.7 kg, the median value for area under the concentration-time curve after i.v. administration increased from 2.61 to 7.15 mg × h/L and the body clearance decreased from a median of 3.81 to 1.42 L/h/kg. Over the same time, the median elimination half-life increased from 1.03 to 2.96 h. For the oral administration a similar trend was noted but the differences were less pronounced. Bioavailability was variable (5.76%-21.59%) and age-independent. For both routes, the plasma concentration of the major tylosin metabolite, tylosin D, was minimal. Protein binding was age-independent and did not exceed 50%. Allometric analysis indicated a relatively poor predictivity of clearance, volume of distribution and elimination half-life for tylosin in turkeys. Conclusions: Age has a significant impact on tylosin PK in turkeys and dosage adjustment may be needed, particularly in young individuals.

Biodistribution and Hepatic Metabolism of Galactosylated $^{111}In-Antibody-Chelator$ Conjugates: Comparison with $^{111}In-Antibody-Chelator$ Conjugates ($^{111}In$-표지 갈락토즈 접합 항체의 체내분포 및 간에서의 대사 : $^{111}In$-표지 항체와의 비교연구)

  • Kwak, Dong-Suk;Jeong, Kyu-Sik;Ha, Jeoung-Hee;Ahn, Byeong-Cheol;Lee, Kyu-Bo;Paik, Chang-H.;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.402-417
    • /
    • 2003
  • Purpose: To evaluate the use of monoclonal antibody (MoAb) as a carrier of the receptor-binding ligand the receptor mediated uptake into liver and subsequent metabolism of $^{111}In-labeled$ galactosylated MoAb-chelator conjugates were investigated and compared with those of $^{111}In$ labeled MoAb. Materials and Methods : T101 MoAb, $IgG_2$ against human lymphocytic leukemic cell, conjugated with cyclic DTPA dianhydride (DTPA) or 2-p-isothiocyanatobenzyl-6-methyl-DTPA (1B4M) was galactosylated with 2-imino-2-methoxyethyl-1-thio-${\beta}$-D-galactose and then radiolabeled with $^{111}In$. Biodistribution and metabolism study was peformed with two $^{111}In-conjugates$ in mice and rats. Results: $^{111}In-labeled$ T101 and its galactosylated conjugates were taken to the liver by the time, mostly within 10 min. However DTPA conjugate was retained longer in the liver than the 1B4M conjugate (55% vs 20% of injected dose at 44 hr). During this time, the radiornetabolite of DTPA conjugate was excreted similarly into urine (24%) and feces (17%). The radiometabolite of 1B4M was excreted primarily into feces (68%) rather than urine (8%). Size exclusion HPLC analysis of the bile and supernatant of liver homogenate showed two peaks the first (35%) with the retention time (Rt) identical to IgG and the second (65%) with Rt similar to free $^{111}In$ at 3 hr post-injection for the 1B4M conjugate, indicating that the metabolite is rapidly excreted through the biliary system. in contrast to DTPA conjugate, the small $^{111}In-DTPA-like$ metabolite was the major radioindium component (90%) in the liver homogenate as early as 3 hour post-injection, but the cumulative radioindium activity in feces was only 17% at 44 hour, indicating that the metabolite from DTPA conjugate does not clear readily through the biliary tract. Conclusion: The galactosylation of the MoAb conjugates resulted in higher hepatocyte uptake and enhanced metabolism, compared to those without galactosylation. Metabolism of the MoAb-conjugates is different between compounds radiolabled with different chelators due to different characteristics of radiometabolites generated in the liver.

Methoxychlor Produces Many Adverse Effects on Male Reproductive System, Kidney and Liver by Binding to Oestrogen Receptors

  • Kim, Dae Young
    • Journal of Embryo Transfer
    • /
    • v.28 no.2
    • /
    • pp.157-162
    • /
    • 2013
  • Methoxychlor (MXC) was developed to be a replacement for the banned pesticide DDT. HPTE [2,2-bis (p-hydroxyphenyl)-1,1,1-trichloroethane], which is an in vivo metabolite of MXC, has strong oestrogenic and anti-androgenic effects. MXC and HPTE are thought to produce potentially adverse effects by acting through oestrogen and androgen receptors. Of the two, HPTE binds to sex-steroid receptors with greater affinity, and it inhibits testosterone biosynthesis in Leydig cells by inhibiting cholesterol side-chain cleavage enzyme activity and cholesterol utilisation. In a previous study, MXC was shown to induce Leydig cell apoptosis by decreasing testosterone concentrations. I focused on the effects of MXC on male mice that resulted from interactions with sex-steroid hormone receptors. Sex-steroid hormones affect other organs including the kidney and liver. Accordingly, I hypothesised that MXC can act through sex-steroid receptors to produce adverse effects on the testis, kidney and liver, and I designed our experiments to confirm the different effects of MXC exposure on the male reproductive system, kidney and liver. In these experiments, I used pre-pubescent ICR mice; the puberty period in ICR mice is from postnatal day (PND) 45 to PND60. I treated the experimental group with 0, 100, 200, 400 mg MXC/kg b.w. delivered by an intra-peritoneal injection with sesame oil used as vehicle for 4 weeks. At the end of the experiment, the mice were sacrificed under anaesthesia. The testes and accessory reproductive organs were collected, weighed and prepared for histological investigation. I performed a chemiluminescence immune assay to observe the serum levels of testosterone, LH and FSH. Blood biochemical determination was also performed to check for other effects. There were no significant differences in our histological observations or relative organ weights. Serum testosterone levels were decreased in a dose-dependent manner; a greater dose resulted in the production of less testosterone. Compared to the control group, testosterone concentrations differed in the 200 and 400 mg/kg dosage groups. In conclusion, I observed markedly negative effects of MXC exposure on testosterone concentrations in pre-pubescent male mice. From our biochemical determinations, I observed some changes that indicate renal and hepatic failure. Together, these data suggest that MXC produces adverse effects on the reproductive system, kidney and liver.

The Mechanism of LDL Receptor Up-regulation by Ginsenoside-Rb2 in HepG2 Cultured under Enriched Cholesterol Condition (고콜레스테롤 조건하에 배양된 HepG2에서의 ginsenoside-Rb2에 의한 LDL receptor 억제 완화 기전)

  • Lim, G-Rewo;Lee, Hyun-Il;Kim, Eun-Ju;Ro, Young-Tae;Noh, Yun-Hee;Koo, Ja-Hyun
    • Journal of Ginseng Research
    • /
    • v.28 no.2
    • /
    • pp.87-93
    • /
    • 2004
  • The effect of ginsenoside-Rb2, one of a major pharmacological component of Panax ginseng C.A. Meyer, on low density lipoprotein (LDL) receptor expression was investigated and compared with hypocholesterolemic drug lovastatin. In HepG2 cell, exogenous cholesterol decreased LDL receptor mRNA expression, but ginsenoside-Rb2 recovered this reduction of LDL receptor mRNA up to normal expression level. Lovastatin also increased LDL receptor mRNA expression as similar as ginsenoside-Rb2 did. The reduction of sterol regulatory element binding protein (SREBP) transcription by exogenous cholesterol was also similarly recovered by ginsenoside-Rb2 and lovastatin addition. Compound K, a metabolite of ginsenoside-Rb2 and -Rb1 by human intestinal bacteria also increased the SREBP mRNA expression in cholesterol-enriched condition. Ginsenoside-Rb2 seems to up-regulate LDL receptor mRNA expression through the induction of de novo SREBP transcription. Therefore, increased expression of SREBP mRNA by ginsenoside-Rb2 elevated the LDL receptor mRNA expression in HepG2 cells, and these inductions possibly drop the plasma cholesterol level in hypercholesterolemia patients, in vivo, as likely in case of lovastatin.

Effects of Ethanol and Phenobarbital on Hemoglobin Adducts Formation in Rats Exposed to Direct Black 38 (Direct Black 38 염료를 흰쥐에 투여 시 형성되는 헤모글로빈 부가체에 에탄올과 Phenobarbital이 미치는 영향)

  • Kim, Chi-Nyon;Lee, Se-Hoon;Roh, Jae-Hoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.3
    • /
    • pp.229-235
    • /
    • 2002
  • Objectives : To evaluate the effects on the formation of benzidine-hemoglobin, and benzidine metabolite-hemoglobin adducts, caused by pretreatment with the known xenobiotic metabolism effectors, ethanol and phenobarbital, in rats administered Direct Black 38 dye. Methods : The experimental rats were divided into three groups: a control group, an ethanol group and a phenobarbital group. Rats were pretreated with ethanol (1g/kg) or phenobarbital (80mg/kg) 24 hours prior to the oral administration of Direct Black 38 (0.5mmol/kg), with the control group being administered the same amount of distilled water. Blood samples were obtained from the vena cava of 5 rats from each group prior to, and at 30 min, 3h, 5h, 9h, 12h, 24h, 48h, 72h, 96h, and 144h following the oral administration of Direct Black 38. Directly after sampling the blood was separated into hemoglobin and plasma, with the adducts being converted into aromatic amines by basic hydrolysis. Hydrolyzed benzidiene, monoacetylbenzidine and 4-aminobiphenyl were analyzed by reverse-phase liquid chromatography with an electrochemical detector, The quantitative amount of the metabolites was expressed by the hemoglobin binding index (HBI). Results : In the ethanol group, benzidine-, monoacetylbenzidine-, and 4-aminobiphenyl-HBI were increased to a greater extent than those in the control group. These results were attributed to the ethanol inducing N-hydrgxylation, which is related to the formation of the hemoglobin adduct, In the phenobarbital group, all the HBIs, with the exception of the benzidine-HBI, were increased to a greater extent than those of the control group. These results were attributed to the phenobarbital inducing N-hydroxylation related to the formation of the hemoglobin adduct. The N-acetylation ratio was only increased with the phenobarbital pretreatment due to the lower benzidine-HBI of the phenobarbital group compared to these of the control and ethanol groups. The N-acetylation ratios for all groups were higher than f for the duration of the experimental period. Although the azo reduction was unaffected by the ethanol, it was inhibited by the phenobarbital, The ratio of the benzidine-HBI in the phenobarbital group was lower than those of the ethanol the control groups for the entire experiment. Conclusion : Our results indicate that both ethanol and phenobarbital increase the formation of adducts by the induction of N-hydroxylation, but also induced N-acetylation. Phenobarbital decreased the formation of benzidine-HBI due to the decrease of the azo reduction. These results suggest that the effects or ethanol and phenobarbital need to be considered in the biochemical monitoring of Direct Black 38.

Protective Effects of Quercetin-3-O-glucuronide against 1-methyl-4-phenylpyridinium-induced Neurotoxicity (1-methyl-4-phenylpyridinium으로 유도된 신경 손상에 대한 quercetin-3-O-glucuronide의 보호 효과)

  • Pariyar, Ramesh;Bastola, Tonking;Seo, Jungwon
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.191-197
    • /
    • 2019
  • Parkinson's disease (PD) is a progressive neurodegenerative disease that mainly affects motor system with clinical features such as bradykinesia, rigidity, tremor and abnormal posture. PD is characterized by the death of dopaminergic neurons in the substantia nigra pars compacta, which is associated with accumulation of oxidative stress and dysregulation of intracellular signaling pathway. Quercetin-3-O-glucuronide (Q3GA), a major metabolite of quercetin, has been reported to have neuroprotective effects. In this study, we examined the neuroprotective effect of Q3GA against 1-methyl-4-phenyl pyridinium ($MPP^+$)-induced neurotoxicity of PD and the underlying molecular mechanisms in SH-SY5Y cells. MTT and LDH assay showed that Q3GA significantly decreased $MPP^+$-induced cell death, which is accompanied by a reduction in poly (ADP-ribose) polymerase (PARP) cleavage. Furthermore, it attenuated $MPP^+$-induced intracellular reactive oxygen species (ROS) with the reduction of Bax/ Bcl-2 ratio. Moreover, Q3GA significantly increased the phosphorylation of Akt and cAMP response element binding protein (CREB), but it has no effects on the phosphorylation of extracellular signal-regulated kinase (ERK). Taken together, these results demonstrate that Q3GA significantly attenuates $MPP^+$-induced neurotoxicity through ROS reduction and Akt/CREB signaling pathway in SH-SY5Y cells. Our findings suggest that Q3GA might be one of the potential candidates for the prevention and/or treatment of PD.