• Title/Summary/Keyword: metabolite M1

Search Result 284, Processing Time 0.024 seconds

Enhancement of Ornithine Production in Proline-Supplemented Corynebacterium glutamicum by Ornithine Cyclodeaminase

  • Lee, Soo-Youn;Cho, Jae-Yong;Lee, Hyun-Jeong;Kim, Yang-Hoon;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.127-131
    • /
    • 2010
  • In this study, Corynebacterium glutamicum and its derived mutants were used to demonstrate the relationship between proline, glutamate, and ornithine. The maximum ornithine production was shown in the culture medium (3,295.0 mg/l) when the cells were cultured with 20 mM proline, and was 15.5 times higher than in the presence of 1 mM proline. However, glutamate, which is known as an intermediate in the process of converting proline to ornithine, did not have any positive effect on ornithine production. This suggests that the conversion of proline to ornithine through glutamate, is not possible in C. glutamicum. Comparative analysis between the wild-type strain, SJC 8043 ($argF^-$, $argR^-$), and SJC 8064 ($argF^-$, $argR^-$, and $ocd^-$), showed that C glutamicum could regulate ornithine production by ornithine cyclodeaminase (Ocd) under proline-supplemented conditions. Therefore, proline directly caused an increase in the endogenous level of ornithine by Ocd, which would be a primary metabolite in the ornithine biosynthesis pathway.

Submerged Culture of Phanerochaete chrysosporium and Lignin Peroxidase Production (Phanerochaete chrysosporium의 액체 배양 및 Lignin Peroxidase 생산)

  • Park, Se-Keun;Jeong, Myoung-Sun;Kim, Yeong-Kwan
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.343-349
    • /
    • 2001
  • This study characterizes the growth of white rot fungi Phanerochaete chrysosporium IFO 31249) and lignin peroxidase(LiP) activity in different submerged culture media. P. chrysosporium was grown in the form of pellet of various sizes from a spore inoculum under shaking liquid culture condition. While the growth of mycelia was higher under the nitrogen-sufficient culture than under the nitrogen-limited culture, ligninase activity was relatively lower. The lignin peroxidase appeared in nitrogen-limited culture and was suppressed by excess nitrogen. High level(40U/l) of lignin peroxidase activity was obtained in the growth medium containing 1.5mM veratryl alcohol, a secondary metabolite of P. chrysosporium. Lignin peroxidase production was not observed under conditions of nitrogen sufficiency or in balanced media, suggesting that control parameters could increase the activity by manipulating the secondary metabolism.

  • PDF

Elucidation of the Biosynthetic Pathway of Vitamin B Groups and Potential Secondary Metabolite Gene Clusters Via Genome Analysis of a Marine Bacterium Pseudoruegeria sp. M32A2M

  • Cho, Sang-Hyeok;Lee, Eunju;Ko, So-Ra;Jin, Sangrak;Song, Yoseb;Ahn, Chi-Yong;Oh, Hee-Mock;Cho, Byung-Kwan;Cho, Suhyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.505-514
    • /
    • 2020
  • The symbiotic nature of the relationship between algae and marine bacteria is well-studied among the complex microbial interactions. The mutual profit between algae and bacteria occurs via nutrient and vitamin exchange. It is necessary to analyze the genome sequence of a bacterium to predict its symbiotic relationships. In this study, the genome of a marine bacterium, Pseudoruegeria sp. M32A2M, isolated from the south-eastern isles (GeoJe-Do) of South Korea, was sequenced and analyzed. A draft genome (91 scaffolds) of 5.5 Mb with a DNA G+C content of 62.4% was obtained. In total, 5,101 features were identified from gene annotation, and 4,927 genes were assigned to functional proteins. We also identified transcription core proteins, RNA polymerase subunits, and sigma factors. In addition, full flagella-related gene clusters involving the flagellar body, motor, regulator, and other accessory compartments were detected even though the genus Pseudoruegeria is known to comprise non-motile bacteria. Examination of annotated KEGG pathways revealed that Pseudoruegeria sp. M32A2M has the metabolic pathways for all seven vitamin Bs, including thiamin (vitamin B1), biotin (vitamin B7), and cobalamin (vitamin B12), which are necessary for symbiosis with vitamin B auxotroph algae. We also identified gene clusters for seven secondary metabolites including ectoine, homoserine lactone, beta-lactone, terpene, lasso peptide, bacteriocin, and non-ribosomal proteins.

ROLES OF HUMAN LIVER CYTOCHROMES P450 3A4 AND 1A2 IN THE OXIDATION OF MYRISTICIN

  • Yun, Chul-Ho;Lee, Hye-Suk;Lee, Hee-Yong;Yim, Sung-Kun;Kim, Keon-Hee;Yea, Sung-Su
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.137.1-137.1
    • /
    • 2003
  • Myristicin, 1-allyl-3, 4-methylenedioxy-5-methoxybenzene, is a naturally occurring alkenylbenzene compound. It is found in nutmag, mace, parsley, carrot, black pepper, many natural oils and flavoring agents. The aim of this work was to identify the form(s) of human liver cytochrome P450 (P450) involved in the hepatic transformation of myristicin to its major metabolite, 5-allyl-1-methoxy-2, 3-dihydroxybenzene (M1). (omitted)

  • PDF

Antioxidant Activities of Bromotopsentin from the Marine Sponge Spongosorites sp. (해면으로부터 분리된 Bromotopsentin의 항산화활성)

  • Lee, Man Gi;Kim, Dong-Kyoo
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.3
    • /
    • pp.224-229
    • /
    • 2013
  • Bromotopsentin (BSM) is a bisindole alkaloid compound, which is recognized as a metabolite of the marine sponge Spongosorites sp. In this study, the antioxidant activity of BSM was investigated. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, the trolox equivalent antioxidant capacity (TEAC) assay, the superoxide radical scavenging (NBT) assay, the lipid peroxidation and hydroxyl radical-induced DNA damage assays were carried out to evaluate the antioxidant activity of BSM. It was found that BSM had stronger scavenging activity on the stable free radical DPPH and superoxide radical than L-ascorbic acid with an $IC_{50}$ value of 62 and 64 ${\mu}M$, respectively. The TEAC value which indicated the total antioxidant capacity of BSM was about 0.8, which was also stronger than L-ascorbic acid. About 1.3 ${\mu}M$ of BSM induced 50% inhibition of lipid peroxidation. 60 nM of BSM exhibited a significant protective activity against DNA strand scission by hydroxyl radical on pBR322 DNA. Taken together, we suggest that BSM possesses strong antioxidant activity, and could be a valuable new addition to the list of anti-aging chemotherapeutic agents.

Platelet-Activating Factor Enhances Interleukin-1 Activity by Alveolar Macrophages : Inhibition by PAF Specific Receptor Antagonists

  • Lee, Ji-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.201-208
    • /
    • 1997
  • It is becoming increasingly clear that the inflammatory reaction can be ascribed to a complex array of mediators generated and released from activated phagocytes. In this study, the effect of PAF on interleukin-1(IL-1) activity by rat alveolar macrophages(AM) was examined using thymocyte proliferation assay in the supernate of sample obtained after 24 hr culture. When AM were cultured with PAF alone, no change in IL-1 activity was observed. However, the combined addition of PAF and muramyl dipeptide(MDP) or lipopolysaccharide(LPS) to AM cultures markedly enhanced IL-1 activity by 2-3 fold compared with AM cultures with the stimulant alone in a concentration dependent fashion. The peack effect was found at $10^{-8}$ M PAF with MDP and $10^{-14}$ M PAF with LPS. the effect of PAF was also tested in silica, toxic respirable dust, -added AM cultures as well as in the cultures containing bacterial compounds. Although silica did not stimulate the IL-1 activity, PAF could enhance IL-1 activity by 2 fold above the value of the silica-treated AM cultures with the peak response at $10^{-12}$ M PAF. Optimal enhancement of IL-1 activity occured when MDP and PAF were present together at the initiation of the 24 hr AM cultures. Additionaly, the biologically inactive precursor/metabolite of PAF, lyso-PAF failed to induce enhancement of IL-1 activity. When the specific, but structurally different PAF receptor antagonists, BN 52021($10^{-5}$ M) and CV 3988($10^{-5}$ M) was treated 15 min before addition of PAF($10^{-8}$ M) and MDP$(10\;{\mu}g/ml)$ to the AM cultures, it markedly inhibited the enhancement of IL-1 activity induced by PAF. The effects of these PAF antagonists were also observed in LPS$(10\;{\mu}g/ml)$-stimulated cells. Collectively, these data suggest that PAF enhances IL-1 activity by interaction with a specific receptor.

  • PDF

Glucosamine increases macrophage lipid accumulation by regulating the mammalian target of rapamycin signaling pathway

  • Sang-Min Kim;Dong Yeol Kim;Jiwon Park;Young-Ah Moon;Inn-Oc Han
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.92-97
    • /
    • 2024
  • Elevated blood glucose is associated with an increased risk of atherosclerosis. Data from the current study showed that glucosamine (GlcN), a normal glucose metabolite of the hexosamine biosynthetic pathway (HBP), promoted lipid accumulation in RAW264.7 macrophage cells. Oleic acid- and lipopolysaccharide (LPS)-induced lipid accumulation was further enhanced by GlcN in RAW264.7 cells, although there was no a significant change in the rate of fatty acid uptake. GlcN increased acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), scavenger receptor class A, liver X receptor, and sterol regulatory element-binding protein-1c (SREBP-1c) mRNA expression, and; conversely, suppressed ATP-binding cassette transporter A1 (ABCA-1) and ABCG-1 expression. Additionally, GlcN promoted O-GlcNAcylation of nuclear SREBP-1 but did not affect its DNA binding activity. GlcN stimulated phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Rapamycin, a mTOR-specific inhibitor, suppressed GlcN-induced lipid accumulation in RAW264.7 cells. The GlcN-mediated increase in ACC and FAS mRNA was suppressed, while the decrease in ABCA-1 and ABCG-1 by GlcN was not significantly altered by rapamycin. Together, our results highlight the importance of the mTOR signaling pathway in GlcN-induced macrophage lipid accumulation and further support a potential link between mTOR and HBP signaling in lipogenesis.

Inhibitory Effects of Curcuminoids on $17{\beta}$-hydroxysteroid Dehydrogenase Type 1 Activity in Animal Livers

  • Lee, Sung-Eun;Park, Byeoung-Soo;Kim, Hye Jin;Lee, Eun-Woo;Yum, Jong Hwa
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.147-152
    • /
    • 2013
  • 17-${\beta}$-hydroxysteroid dehydrogenase type 1 ($17{\beta}$-HSD type 1) mediates the reaction of $17{\beta}$-estradiol (E2) production from estrone (E1). Inhibitory effects of curcuminoids on $17{\beta}$-HSD type 1 activity were investigated to find a lead compound for treating estrogen-dependent diseases including breast cancer. Among curcuminoids, demethoxycurcumin showed potent inhibitory effect ($IC_{50}=2.7{\mu}M$) on mouse $17{\beta}$-HSD type 1. Curcuminoids also displayed their inhibitory effects on the production of $17{\alpha}$-estradiol which is a carcinogenic metabolite produced by the enzyme. Bisdemethoxycurcumin ($IC_{50}=1.3{\mu}M$) showed potent inhibitory effect on the $17{\alpha}$-estradiol production by chicken $17{\beta}$-HSD type 1. Curcuminoids did not inhibit ERE transcriptional activity with and without E2. Taken together, curcuminoids can be used for treating and preventing E2-dependent diseases via inhibition on $17{\beta}$-HSD type 1 activity.

Radical Scavenging Hydroxyphenyl Ethanoic Acid Derivatives from a Marine-Derived Fungus

  • Li Xifeng;Kim Se-Kwon;Kang Jung-Sook;Choi Hong-Dae;Son Byeng-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.637-638
    • /
    • 2006
  • Bioassay-guided fractionation of an organic extract of the culture broth from an unidentified marine-derived fungus led to the isolation of a new metabolite, N-[2-(4-hydroxyphenyl) acetyl]formamide (1), along with four known polyketides, 4-hydroxyphenyl acetamide (2), 4-hydroxyphenyl acetic acid (3), 3,4-dihydroxyphenyl acetic acid (4), and N-[2-(4-hydroxyphenyl)ethenyl]formamide (5). The structures of 1-5 were elucidated by spectral data analyses. Among them, compounds 1, 4, and 5 exhibited significant radical scavenging activity against 1, 1-diphenyl-2-picrylhydrazyl (DPPH) with $IC_{50}$ values of 8.4, 11.9, and $0.2{\mu}M$, respectively.

Biological Activities and the Metabolite Analysis of Camptotheca acuminata Dence.

  • Cho, Jwa Yeong;Park, Mi Jin;Ryu, Da Hye;Kang, Young-Hwa
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.14-14
    • /
    • 2018
  • This Camptotheca acuminata Decne. (CA), belonging to Nyssaceae, is a deciduous tree. and has been used as Traditional Chinese medicine since ancient times. The CA produces camptothecin a natural indole alkaloid, and reported to have anti-cancer effects. But the studies on biological activities of CA leaves are insufficient. Therefore, this study confirmed various biological activities such as antioxidant, antidiabetic, anticancer, antiinflammatory and metabolism analysis by HPLC-MS/MS of CA leaves. The $RC_{50}$ values of DPPH radical scavenging activity of ethyl acetate fraction, n-Butanol fraction, methanol extraction, water fraction and n-Hexane fraction were $12.23{\pm}0.01$, $15.93{\pm}0.42$, $55.12{\pm}0.45$, $56.29{\pm}4.15$ and $427.29{\pm}6.13ug/mL$, respectively. The $IC_{50}$ values of ${\alpha}$-glucosidase inhibitory activity of ethyl acetate fraction, n-Butanol fraction, methanol extraction, n-Hexane fraction and water fraction were $24.29{\pm}0.14$, $47.86{\pm}0.45$, $54.23{\pm}1.21$ $466.76{\pm}2.21$ and $623.91{\pm}9.67ug/mL$, respectively. The nitric oxide release activity of n-Hexane fraction, methanol extraction, ethyl acetate fraction, water fraction and n-Butanol fraction were $31.49{\pm}5.74$, $29.79{\pm}0.71$, $26.89{\pm}0.71$, $8.24{\pm}5.83$ and $7.75{\pm}4.08%$ at 25 ug/mL, respectively. The anti-cancer activity of n-Hexane fraction, methanol extraction, ethyl acetate fraction, water fraction and n-Butanol fraction were $31.49{\pm}5.74$, $29.79{\pm}0.71$, $26.89{\pm}0.71$, $8.24{\pm}5.83$ and $7.75{\pm}4.08%$ at 25 ug/mL, respectively. The ethyl acetate fraction activities showed higher biological activities than other fractions. Thus, Additional studies were conducted using ethyl acetate fraction. Metabolite analysis was performed using a LCMS-8040 triple quadrupole mass spectrometer. As a result, Five compounds (1-5) were identified in the ethyl acetate fraction of the CA leave. The identification of these compounds was generated by the analysis of fragmentation methods of the negative and positive ion modes. Five compounds were identified as gallic acid (1), chlorogenic acid (2), isoquercetin (3), astragalin (4) and camptothecin (5). These results suggest that the CA leave can be used for functional materials.

  • PDF