• 제목/요약/키워드: metabolic study

Search Result 3,363, Processing Time 0.028 seconds

Transcriptome Analysis of Streptococcus mutans and Separation of Active Ingredients from the Extract of Aralia continentalis (Streptococcus mutans의 전사체 분석과 독활 추출물로부터 활성 성분 분리)

  • Hyeon-Jeong Lee;Da-Young Kang;Yun-Chae Lee;Jeong Nam Kim
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.538-548
    • /
    • 2023
  • The research has been conducted on the isolation of antimicrobial compounds from plant natural extracts and their potential application in oral health care products. This study aimed to investigate the antimicrobial mechanism by analyzing the changes in gene expression of Streptococcus mutans, a major oral pathogen, in response to complex compounds extracted from Aralia continentalis and Arctii Semen using organic solvents. Transcriptome analysis (RNA-seq) revealed that both natural extracts commonly upregulated or downregulated the expression of various genes associated with different metabolic and physiological activities. Three genes (SMU_1584c, SMU_2133c, SMU_921), particularly SMU_921 (rcrR), known as a transcription activator of two sugar phosphotransferase systems (PTS) involved in sugar transport and biofilm formation, exhibited consistent high expression levels. Additionally, component analysis of the A. continentalis extract was performed to compare its effects on gene expression changes with the A. Semen extract, and two active compounds were identified through gas chromatography-mass spectrometry (GC-MS) analysis of the active fraction. The n-hexane fraction (ACEH) from the A. continentalis extract exhibited antibacterial specificity against S. mutans, leading to a significant reduction in the viable cell counts of Streptococcus sanguinis and Streptococcus gordonii among the tested multi-species bacterial communities. These findings suggest the broad-spectrum antibacterial activity of the A. continentalis extract and provide essential foundational data for the development of customized antimicrobial materials by elucidating the antibacterial mechanism of the identified active compounds.

The Effect of Antibiotics on the Performance of Broiler Chicks (브로일러에 있어서 항생제의 성장촉진 효과)

  • Han, J.W.;Chung, J.S.;Paik, I.K.;Lee, S.H.
    • Korean Journal of Poultry Science
    • /
    • v.12 no.2
    • /
    • pp.89-95
    • /
    • 1985
  • Two experiments were undertaken to study the growth promoting effect of Spiramycin and Virginiamycin at the level of 5ppm each. In the first experiment, 180 day - old male broiler chickens (Maniker parent stock) were divided into 18 groups of 10 birds each. Six groups were placed on one of the three experimental diets (Nonmedicated control, Spiramycin supplemented diet and Virginiamycin supplemented diet). Basal diet of Experiment 1 contained 21.9% crude protein and 3159kcal /kg diet. Second experiment employed same treatments as were used in the Experiment 1. Ninety male and 90 female day-old broiler chickens(Maniker commercial) were grouped by 10 birds of sane sex in each and assigned to 3${\times}$2 factorial design. Basal diet of Experiment 2 contained 19.95% crude protein and 2931kcal/kg diet. Chicks were fed for six weeks in battery with raised floor and kept further for metabolic trials. The results of feeding trials showed that there were no statistically significant differences between treatments in weight gain, feed intake, feed efficiency and mortality. However, birds fed Antibiotic B supplemented diet grew approximately 3% more than the control in Experiment 1 and than those fed Antibiotic A supplemented diet in Experiment 2. Feed efficiency was also improved by supplementing Antibiotic B in both experiments. There were significant(P〈0.01) differences between sexes in growth rate, feed intake and feed efficiency. Birds fed Antibiotic B supplemented diet of Experiment 1 showed significantly (P〈0.01) greater availability for crude fat than those fed other diets. Birds fed Antiobiotic A supplemented diet in Experiment 1 showed significantly (P〈0.05) lower availability of crude fiber than those of other treatments. Weight of small intestine of birds fed Antibiotic B tended to be heavier than those fed other diets.

  • PDF

Effects of different cardiorespiratory fitness response to exercise training on cardiovascular disease and adipocytokine in abdominal obesity women (운동 트레이닝을 통한 심폐체력 반응의 차이가 복부비만 여성의 심혈관계 위험요인과 아디포싸이토카인에 미치는 영향)

  • Park, S.H.
    • Exercise Science
    • /
    • v.21 no.1
    • /
    • pp.111-120
    • /
    • 2012
  • The purpose of the study was to assess the effects of different cardiorespiratory fitness response to exercise training on cardiovascular disease and adipocytokine release and gene expression in abdominal obesity women. forty eight middle-age women were divided to a exercise-responder (n=34) group (ERG) and a exercise-nonresponder (n=14) group (ENRG) based on cardiorespiratory fitness after exercise training (12weeks, 1200 kcal/week, moderate-vigorous intensity, walking and jogging). Cardiorespiratory fitness was measured using maximal oxygen uptake with metabolic gas analysis and body composition was determined by bioelectrical impedance. We measured lipid and glucose profiles, blood adipocytokines and adipocytokine genes expression in adipose tissue. Waist girth (p=0.040), and %body fat (p=0.031) were significantly decreased in ERG than ENRG. Triglyceride (p=0.023) and systolic blood pressure (0.046) were significantly decreased in ERG than ENRG. Blood leptin (p=0.022) was significantly decrease in ERG than ENRG but leptin gene expression was decreased both groups (p<0.001). These results show that exercise-responder group improved cardiovascular disease risk factors and adipocytokine more than exercise-nonresponder group after exercise training. Moreover, exercise-nonresponders group show that obese indices and blood leptin and leptin gene expression in adipose tissue were decreased despite the failure to improve fitness. Therefore, regular exercise training seems to give health benefits although the failure to improve fitness.

Study of Plant Growth Inhibition with Edible Sweetener Saccharin and Acesulfame Potassium (식용 감미료 사카린과 에이스셜팜 칼륨의 식물 성장 저해 연구)

  • Donggiun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.661-667
    • /
    • 2023
  • Five commercially available edible sweeteners are used as diet products because they can replace sucrose. In studies on the effects on animals and the human body, stability has been proven by excreting-oriented studies with characteristics of animal cells, and accumulation in small amounts has been ignored. On the other hand, plants can absorb, degrade, and accumulate foreign substances, so the effect of degradability and accumulation potential can be studied using plants. Metabolic effects in plants of commercially available saccharin and acesulfame potassium (Ace K) were tested using germinated barley and bean sprouts. In germinated barley and bean sprouts, saccharin and ace K showed inhibitory effects on plant growth in all organs from low concentrations in leaves, stems and roots. In addition, it can be observed that the symptoms of death appear clearly over time, so it can be seen that they are accumulated in the body of the plant. As the accumulated amount increases, the toxic effect increases and the plant reaches a state where it is unable to metabolize, turning black from the tip of the leaf and reaching a state of death. In order to remove the accumulated artificial sweetener, recovery was attempted by culturing in distilled water, but it acts as a substance that is not degraded and dies without avoiding toxicity. Saccharin and ace K cannot be excreted from the cell. Its toxic effects are thought to be persistent, inhibiting growth and eventually leading to cell death.

Unique Cartilage Matrix-Associated Protein Alleviates Hyperglycemic Stress in MC3T3-E1 Osteoblasts (Unique cartilage matrix-associated proteins에 의한 MC3T3-E1 조골세포에서의 고혈당 스트레스 완화 효과)

  • Hyeon Yeong Ju;Na Rae Park;Jung-Eun Kim
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.851-858
    • /
    • 2023
  • Unique cartilage matrix-associated protein (UCMA) is an extrahepatic vitamin K-dependent protein rich in γ-carboxylated (Gla) residues. UCMA has been recognized for its ability to promote osteoblast differentiation and enhance bone formation; however, its impact on osteoblasts under hyperglycemic stress remains unknown. In this paper, we investigated the effect of UCMA on MC3T3-E1 osteoblastic cells under hyperglycemic conditions. After exposure to high glucose, the MC3T3-E1 cells were treated with recombinant UCMA proteins. CellROX and MitoSOX staining showed that the production of reactive oxygen species (ROS), which initially increased under high-glucose conditions in MC3T3-E1 cells, decreased after UCMA treatment. Additionally, quantitative polymerase chain reaction revealed increased expression of antioxidant genes, nuclear factor erythroid 2-related factor 2 and superoxide dismutase 1, in the MC3T3-E1 cells exposed to both high glucose and UCMA. UCMA treatment downregulated the expression of heme oxygenase-1, which reduced its translocation from the cytosol to the nucleus. Moreover, the expression of dynamin-related protein 1, a mitochondrial fission marker, was upregulated, and AKT signaling was inhibited after UCMA treatment. Overall, UCMA appears to mitigate ROS production, increase antioxidant gene expression, impact mitochondrial dynamics, and modulate AKT signaling in osteoblasts exposed to high-glucose conditions. This study advances our understanding of the cellular mechanism of UCMA and suggests its potential use as a novel therapeutic agent for bone complications related to metabolic disorders.

Effects of Walking Exercise Intervention on Body Composition, Insulin Resistance, and Blood Pressure in Elderly Obese Women with Stage 1 Hypertension (걷기운동이 1기 고혈압을 가진 비만 노인 여성의 신체조성, 인슐린 저항성 및 혈압에 미치는 영향)

  • Moon-Soo Park;Yi-Sub Kwak
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.791-796
    • /
    • 2023
  • It is well known that any kind of physical activity can be a useful nonpharmacological tool in the prevention and treatment of cardiovascular diseases, including antihypertension. There is also strong evidence that suggests that people with cardiovascular disease are less active than healthy people. Therefore, the aim of this study was to investigate the effect of a 12-week walking exercise intervention program on body composition, insulin resistance, and blood pressure in obese elderly women with stage 1 hypertension. The walking exercise program was performed for 50 min, three times per week. The intensity progressively increased: RPE 11 to 12, 40-50% HRR, for weeks 1-4; RPE 12 to 13, 50-60% HRR, for weeks 5-8; and RPE 13 to 14, 60-65% HRR, for weeks 9-12. The subjects were 20 obese elderly women with stage 1 hypertension (SBP: 140-159 mmHg or DBP: 90-99 mmHg). Half were placed in the walking exercise group (EX, n=10), and half were placed in the control group (CON, n=10). At the end of the program, the EX group members had significantly lower body fat, insulin resistance, and SBP compared to the CON group members. These results suggest that undertaking a 12-week walking exercise program improves body fat, insulin resistance, and SBP, which may improve the incidence of metabolic disease in elderly obese women with stage 1 hypertension.

Human Androgen Receptor-Mediated Endocrine Disrupting Potential of Parabens and Triclosan (파라벤류와 트리글로산의 인체 안드로겐 수용체 매개 내분비계 교란작용)

  • Ji-Won Kim;Hee-Seok, Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.305-310
    • /
    • 2023
  • This study aimed to determine the human androgen receptor (AR)-mediated endocrine disrupting potential of parabens and triclosan in food and household products using a cell-based assay in the OECD TG No.458, the 22Rv1/MMTV_GR-KO transcriptional activation assay. Four parabens (methyl-, ethyl-, propyl-, and butyl-) are determined as AR antagonists in OECD TG No.458. However, their AR antagonistic effects were not exhibited in the presence of the S9 hepatic fraction. Triclosan is also classified as an AR antagonist, and the AR antagonistic effect induced by triclosan significantly decreased in the presence of the phase I + II S9 fraction. Regarding the mechanism of AR antagonism induced by parabens and triclosan, the AR-mediated endocrine disrupting effects were exhibited through suppressing the translocation of ligand-bound AR to the nucleus via blocking of AR dimerization in the cytosol. These results indicate that the four parabens and triclosan have AR-mediated endocrine disrupting potential through an AR antagonistic effect via inhibiting AR dimerization; however, their endocrine disrupting effects deceased in the presence of hepatic metabolic enzymes.

Purple perilla frutescens extracts containing α-asarone inhibit inflammatory atheroma formation and promote hepatic HDL cholesterol uptake in dyslipidemic apoE-deficient mice

  • Sin-Hye Park;Young Eun Sim;Min-Kyung Kang;Dong Yeon Kim;Il-Jun Kang;Soon Sung Lim;Young-Hee Kang
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1099-1112
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Dyslipidemia causes metabolic disorders such as atherosclerosis and fatty liver syndrome due to abnormally high blood lipids. Purple perilla frutescens extract (PPE) possesses various bioactive compounds such as α-asarone, chlorogenic acid and rosmarinic acid. This study examined whether PPE and α-asarone improved dyslipidemia-associated inflammation and inhibited atheroma formation in apolipoprotein E (apoE)-deficient mice, an experimental animal model of atherosclerosis. MATERIALS/METHODS: ApoE-deficient mice were fed on high cholesterol-diet (Paigen's diet) and orally administrated with 10-20 mg/kg PPE and α-asarone for 10 wk. RESULTS: The Paigen's diet reduced body weight gain in apoE-deficient mice, which was not restored by PPE or α-asarone. PPE or α-asarone improved the plasma lipid profiles in Paigen's diet-fed apoE-deficient mice, and despite a small increase in high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein (LDL)-cholesterol, and very LDL were significantly reduced. Paigen's diet-induced systemic inflammation was reduced in PPE or α-asarone-treated apoE-deficient mice. Supplying PPE or α-asarone to mice lacking apoE suppressed aorta atherogenesis induced by atherogenic diet. PPE or α-asarone diminished aorta accumulation of CD68- and/or F4/80-positive macrophages induced by atherogenic diet in apoE-deficient mice. Treatment of apoE-deficient mice with PPE and α-asarone resulted in a significant decrease in plasma cholesteryl ester transfer protein level and an increase in lecithin:cholesterol acyltransferase reduced by supply of Paigen's diet. Supplementation of PPE and α-asarone enhanced the transcription of hepatic apoA1 and SR-B1 reduced by Paigen's diet in apoE-deficient mice. CONCLUSIONS: α-Asarone in PPE inhibited inflammation-associated atheroma formation and promoted hepatic HDL-C trafficking in dyslipidemic mice.

Exploration of nutritional and bioactive peptide properties in goat meat from various primal cuts during in vitro gastrointestinal digestion and absorption

  • Pichitpon Luasiri;Papungkorn Sangsawad;Jaksuma Pongsetkul;Pramote Paengkoum;Chatsirin Nakharuthai;Saranya Suwanangul;Sasikan Katemala;Narathip Sujinda;Jukkrapong Pinyo;Jarunan Chainam;Chompoonuch Khongla;Supaluk Sorapukdee
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1096-1109
    • /
    • 2024
  • Objective: This research aims to explore the nutritional and bioactive peptide properties of goat meat taken from various primal cuts, including the breast, shoulder, rib, loin, and leg, to produce these bioactive peptides during in vitro gastrointestinal (GI) digestion and absorption. Methods: The goat meat from various primal cuts was obtained from Boer goats with an average carcass weight of 30±2 kg. The meat was collected within 3 h after slaughter and was stored at -80℃ until analysis. A comprehensive assessment encompassed various aspects, including the chemical composition, cooking properties, in vitro GI digestion, bioactive characteristics, and the bioavailability of the resulting peptides. Results: The findings indicate that the loin muscles contain the highest protein and essential amino acid composition. When the meats were cooked at 70℃ for 30 min, they exhibited distinct protein compositions and quantities in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile, suggesting they served as different protein substrates during GI digestion. Subsequent in vitro simulated GI digestion revealed that the cooked shoulder and loin underwent the most significant hydrolysis during the intestinal phase, resulting in the strongest angiotensin-converting enzyme (ACE) and dipeptidyl peptidase-IV (DPP-IV) inhibition. Following in vitro GI peptide absorption using a Caco-2 cell monolayer, the GI peptide derived from the cooked loin demonstrated greater bioavailability and a higher degree of ACE and DPP-IV inhibition than the shoulder peptide. Conclusion: This study highlights the potential of goat meat, particularly cooked loin, as a functional meat source for protein, essential amino acids, and bioactive peptides during GI digestion and absorption. These peptides promise to play a role in preventing and treating metabolic diseases due to their dual inhibitory effects on ACE and DPP-IV.

Inhalation of panaxadiol alleviates lung inflammation via inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells

  • Yifan Wang;Hao Wei;Zhen Song;Liqun Jiang;Mi Zhang;Xiao Lu;Wei Li;Yuqing Zhao;Lei Wu;Shuxian Li;Huijuan Shen;Qiang Shu;Yicheng Xie
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.77-88
    • /
    • 2024
  • Background: Lung inflammation occurs in many lung diseases, but has limited effective therapeutics. Ginseng and its derivatives have anti-inflammatory effects, but their unstable physicochemical and metabolic properties hinder their application in the treatment. Panaxadiol (PD) is a stable saponin among ginsenosides. Inhalation administration may solve these issues, and the specific mechanism of action needs to be studied. Methods: A mouse model of lung inflammation induced by lipopolysaccharide (LPS), an in vitro macrophage inflammation model, and a coculture model of epithelial cells and macrophages were used to study the effects and mechanisms of inhalation delivery of PD. Pathology and molecular assessments were used to evaluate efficacy. Transcriptome sequencing was used to screen the mechanism and target. Finally, the efficacy and mechanism were verified in a human BALF cell model. Results: Inhaled PD reduced LPS-induced lung inflammation in mice in a dose-dependent manner, including inflammatory cell infiltration, lung tissue pathology, and inflammatory factor expression. Meanwhile, the dose of inhalation was much lower than that of intragastric administration under the same therapeutic effect, which may be related to its higher bioavailability and superior pharmacokinetic parameters. Using transcriptome analysis and verification by a coculture model of macrophage and epithelial cells, we found that PD may act by inhibiting TNFA/TNFAR and IL7/IL7R signaling to reduce macrophage inflammatory factor-induced epithelial apoptosis and promote proliferation. Conclusion: PD inhalation alleviates lung inflammation and pathology by inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells. PD may be a novel drug for the clinical treatment of lung inflammation.