• Title/Summary/Keyword: metabolic pathways

Search Result 439, Processing Time 0.037 seconds

Metabolomic profiling of postmortem aged muscle in Japanese Brown beef cattle revealed an interbreed difference from Japanese Black beef

  • Susumu Muroya;Riko Nomura;Hirotaka Nagai;Koichi Ojima;Kazutsugu Matsukawa
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.506-520
    • /
    • 2023
  • Objective: Japanese Brown (JBR) cattle, especially the Kochi (Tosa) pedigree (JBRT), is a local breed of moderately marbled beef. Despite the increasing demand, the interbreed differences in muscle metabolites from the highly marbled Japanese Black (JBL) beef remain poorly understood. We aimed to determine flavor-related metabolites and postmortem metabolisms characteristic to JBRT beef in comparison with JBL beef. Methods: Lean portions of the longissimus thoracis (loin) muscle from four JBRT cattle were collected at 0, 1, and 14 d postmortem. The muscle metabolomic profiles were analyzed using capillary electrophoresis time-of-flight mass spectrometry. The difference in post-mortem metabolisms and aged muscle metabolites were analyzed by statistical and bioinformatic analyses between JBRT (n = 12) and JBL cattle (n = 6). Results: A total of 240 metabolite annotations were obtained from the detected signals of the JBRT muscle samples. Principal component analysis separated the beef samples into three different aging point groups. According to metabolite set enrichment analysis, post-mortem metabolic changes were associated with the metabolism of pyrimidine, nicotinate and nicotinamide, purine, pyruvate, thiamine, amino sugar, and fatty acid; citric acid cycle; and pentose phosphate pathway as well as various amino acids and mitochondrial fatty acid metabolism. The aged JBRT beef showed higher ultimate pH and lower lactate content than aged JBL beef, suggesting the lower glycolytic activity in postmortem JBRT muscle. JBRT beef was distinguished from JBL beef by significantly different compounds, including choline, amino acids, uridine monophosphate, inosine 5'-monophosphate, fructose 1,6-diphosphate, and betaine, suggesting interbreed differences in the accumulation of nucleotide monophosphate, glutathione metabolism, and phospholipid metabolism. Conclusion: Glycolysis, purine metabolism, fatty acid catabolism, and protein degradation were the most common pathways in beef during postmortem aging. The differentially expressed metabolites and the relevant metabolisms in JBRT beef may contribute to the development of a characteristic flavor.

Physiologic and epigenetic effects of nutrients on disease pathways

  • Soo-Hyun Park;Jaein Lee;Jin-Taek Hwang;Min-Yu Chung
    • Nutrition Research and Practice
    • /
    • v.17 no.1
    • /
    • pp.13-31
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Epigenetic regulation by nutrients can influence the development of specific diseases. This study sought to examine the effect of individual nutrients and nutrient families in the context of preventing chronic metabolic diseases via epigenetic regulation. The inhibition of lipid accumulation and inflammation by nutrients including proteins, lipids, vitamins, and minerals were observed, and histone acetylation by histone acetyltransferase (HAT) was measured. Correlative analyses were also performed. MATERIALS/METHODS: Nutrients were selected according to information from the Korean Ministry of Food and Drug Safety. Selected nutrient functionalities, including the attenuation of fatty acid-induced lipid accumulation and lipopolysaccharide-mediated acute inflammation were evaluated in mouse macrophage Raw264.7 and mouse hepatocyte AML-12 cells. Effects of the selected nutrients on in vitro HAT inhibition were also evaluated. RESULTS: Nitric oxide (NO) production correlated with HAT activity, which was regulated by the amino acids group, suggesting that amino acids potentially contribute to the attenuation of NO production via the inhibition of HAT activity. Unsaturated fatty acids tended to attenuate inflammation by inhibiting NO production, which may be attributable to the inhibition of in vitro HAT activity. In contrast to water-soluble vitamins, the lipid-soluble vitamins significantly decreased NO production. Water- and lipid-soluble vitamins both exhibited significant inhibitory activities against HAT. In addition, calcium and manganese significantly inhibited lipid accumulation, NO production, and HAT activity. CONCLUSIONS: Several candidate nutrients and their family members may have roles in the prevention of diseases, including hepatic steatosis and inflammation-related diseases (i.e., nonalcoholic steatohepatitis) via epigenetic regulation. Further studies are warranted to determine which specific amino acids, unsaturated fatty acids and lipid-soluble vitamins or specific minerals influence the development of steatosis and inflammatory-related diseases.

Association between cancer metabolism and muscle atrophy (암 대사와 근위축의 연관성)

  • Yeonju Seo;Ju-Ock Nam
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.387-396
    • /
    • 2022
  • Skeletal muscle accounts for about 40-50% of body weight and is an important tissue that performs various functions, such as maintaining posture, supporting soft tissues, maintaining body temperature, and respiration. Cancer, which occurs widely around the world, causes cancer cachexia accompanied by muscular atrophy, which reduces the effectiveness of anticancer drugs and greatly reduces the quality of life and survival rate of cancer patients. Therefore, research to improve cancer cachexia is ongoing. However, there are few studies on the link between cancer and muscle atrophy. Cancer cells exhibit distinct microenvironment and metabolism from tumor cells, including tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), and insulin resistance due to the Warburg effect. Therefore, we summarize the microenvironment and metabolic characteristics of cancer cells, and the molecular mechanisms of muscle atrophy that can be affected by cytokine and insulin resistance. In addition, this suggests the possibility of improving cancer cachexia of substances affecting TAM, TAN, and Warburg effect. We also summarize the mechanisms identified so far through single agents and the signaling pathways mediated by them that may ameliorate cancer cachexia.

Effects of Scutellariae Radix on Gene Expression of Human Cervical Cancer Cells(SNU-703) (황금추출물이 인간 유래 자궁경부암세포의 유전자발현에 미치는 영향)

  • Jo, Hyun-Jung;Gu, Hee-Jun;Cho, Seong-Hee;Park, Kyung-Mi;Yang, Seung-Jeong
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.3
    • /
    • pp.117-134
    • /
    • 2009
  • Purpose: In the theory of traditional medicine, Scutellariae Radix (SR) can clear away heat and remove dampness, purge the sthenic fire and remove toxic materials, cool blood and stop bleeding to prevent miscarriage. Recently, SR is known to have anti-cancer activity. For this reason, the present author designed to investigate the effect of SR on proliferation rates of cervical cancer cell line, then effects on genetic profile by SR. Methods: The genetic profile for the effect of SR on human derived cervical cancer cell line, SNU-703, was measured using microarray technique, and the functional analysis on these genes was conducted. Results: Total 519 genes were up-regulated and 606 genes down-regulated in cells treated with SR. Genes induced or suppressed by SR were all mainly concerned with metabolic process, regulation of biological process and protein binding. The network of total protein interactions was measured using cytoscape program, and some key molecules, such as TNFRSF1A, AKT1, MAPK3, and STAT3 that can be used for elucidation of therapeutical mechanism of medicine in future were identified. Conclusion: These results suggest possibility of SR as anti-cancer drug and also suggest that related mechanisms are involved in TNFRSF1A, AKT1, MAPK3, and STAT3 related signalling pathways.

Comparison of rectum fecal bacterial community of finishing bulls fed high-concentrate diets with active dry yeast and yeast culture supplementation

  • Kai, Gao;Chunyin, Geng
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • Objective: The objective of this study was to investigate the effects of feeding active dry yeast (ADY) and yeast culture (YC) on fecal bacterial community in finishing bulls fed high-concentrate diets in the same experimental environment. Methods: Forty-five healthy finishing cattle (Simmental×Chinese Luxi yellow bulls; 24 months; 505±29 kg) were randomly divided into three groups: i) CON group (control group, only fed basal diet), ii) ADY group (fed basal diet + active dry yeast), and iii) YC group (fed basal diet + yeast culture). At the end of the trial, nine rectum fecal samples were randomly selected from each group for bacterial DNA sequencing. Results: There was no difference among groups about alpha diversity indices (all p>0.05), including ACE, Chao 1, Shannon, and Simpson indices. Principal component analysis and non-metric multidimensional scaling analysis showed a high similarity among three groups. Compared with CON group, ADY and YC groups had greater relative abundance of c_Clostridia, o_Oscillospirales, and f_Oscillospiraceae, but lesser relative abundance of g_Megasphaera, and s_Megasphaera_elsdenii (all p<0.01). And, the relative abundances of p_Firmicutes (p = 0.03), s_Prevotella_sp (p = 0.03), o_Clostridiales (p<0.01), g_Clostridium (p<0.01), f_Caloramatoraceae (p<0.01), and f_Ruminococcaceae (p = 0.04) were increased in the ADY group. The PICRUSt2 prediction results showed that the metabolic pathways had no significant differences among groups (p>0.05). Besides, the relative abundance of c_Clostridia (r = 0.42), and f_Oscillospiraceae (r = 0.40) were positively correlated to average daily gain of finishing bulls (p<0.05). Conclusion: Both of ADY and YC had no effect on diversity of fecal bacteria in finishing bulls, but the supplementation of ADY and YC can improve the large intestinal function in finishing bulls by increasing the abundance of cellulolytic bacteria and altering the abundance of lactic acid-utilizing bacteria.

Subcritical water extraction of Gracilaria chorda abbreviates lipid accumulation and obesity-induced inflammation

  • Laxmi Sen Thakuri;Chul Min Park;Jin Woo Park;Hyeon-A Kim;Dong Young Rhyu
    • ALGAE
    • /
    • v.38 no.1
    • /
    • pp.81-92
    • /
    • 2023
  • Obesity-induced inflammation is crucial in the pathogenesis of insulin resistance and type 2 diabetes. In this study, we investigated the effects of the Gracilaria chorda (GC) on lipid accumulation and obesity-induced inflammatory changes or glucose homeostasis in cell models (3T3-L1 adipocytes and RAW 264.7 macrophages). Samples of GC were extracted using solvents (water, methanol, and ethanol) and subcritical water (SW) at different temperatures (90, 150, and 210℃). The total phenolic content of GCSW extract at 210℃ (GCSW210) showed the highest content compared to others, and GCSW210 highly inhibited lipid accumulation and significantly reduced gene expressions of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-α, sterol regulatory element-binding protein-1c, and fatty acid synthase in 3T3-L1 adipocytes. In addition, GCSW210 effectively downregulated the pro-inflammatory cytokine regulator pathways in RAW 264.7 macrophages, including mitogen-activated protein kinase, signal transducers and activators of transcription and nuclear factor-κB. In co-culture of 3T3-L1 adipocytes and RAW 264.7 macrophages, GCSW210 significantly reduced nitric oxide production and interleukin-6 levels, and improved glucose uptake with dose-dependent manner. These findings suggest that GCSW210 improves glucose metabolism by attenuating obesity-induced inflammation in adipocytes, which may be used as a possible treatment option for managing obesity and associated metabolic disorders.

Transcriptome Profiling Identifies Genes of Waterlogging-Tolerant and -Sensitive Rapeseeds Differentially Respond to Waterlogging Stress at the Flowering Stage

  • Ji-Eun Lee;Da-Hee An;Kwang-Soo Kim;Young-Lok Cha;Dong-Chil Chang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.229-229
    • /
    • 2022
  • Rapeseed is a crop that is waterlogging sensitive, and it is necessary to breed waterlogging tolerance varieties. Our study presents the comparative transcriptome changes in two rapeseed lines, i.e., waterlogging-tolerant (tJ8634-B-30,) and - sensitive ('EMS26') lines under control and waterlogging stress treatments at the flowering stage. RNA-sequencing analysis revealed 13,279 differentially expressed genes (DEGs) for 'J8634-B-30' and 8,682 DEGs for 'EMS26' under waterlogging stress condition compared to control. Among DEGs of 'J8634-B-30', 6,818 were up-regulated and 6,461 were down-regulated. On the other hand, among the DEGs of 'EMS26', the number of down-regulated genes (5,240) were higher than that of up-regulated genes (3,442). Gene ontology enrichment analysis showed that DEGs related to glucan metabolic, cell wall, and oxidoreductase activity were significantly changed in 'J8634-B-30'. Kyoto Encyclopedia of Genes and Genomes (KEGG)-based analysis in 'J8634-B-30' identified up-regulated DEGs being involved in MAPK signaling pathways. In addition, the DEGs belonging to mechanisms responding to waterlogging stress, i.e., plant hormones, carbon metabolism, Reactive oxygen species (ROS), Nitric oxide (NO) etc. were compared in rapeseed lines. Several DEGs including ethylene-responsive transcription factor (ERF), constitutive triple response (CTR) (in ethylene signaling pathway), monodehydroascorbate Reductase (MDAR), NADPH oxidase (in ROS pathway), cytochrome c oxidase assembly protein (COX) (in NO pathway) up-regulated in 'J8634-B-30'. These outcomes provided the valuable information for further exploring the genetic mechanism of waterlogging tolerance in rapeseed.

  • PDF

Genome-Based Reclassification of Strain KIST612, Previously Classified as Eubacterium limosum, into a New Strain of Eubacterium callanderi

  • Ji-Yeon Kim;Byeongchan Kang;Soyoung Oh;Yeji Gil;In-Geol Choi;In Seop Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1084-1090
    • /
    • 2023
  • The strain KIST612, initially identified as E. limosum, was a suspected member of E. callanderi due to differences in phenotype, genotype, and average nucleotide identity (ANI). Here, we found that E. limosum ATCC 8486T and KIST612 are genetically different in their central metabolic pathways, such as that of carbon metabolism. Although 16S rDNA sequencing of KIST612 revealed high identity with E. limosum ATCC 8486T (99.2%) and E. callanderi DSM 3662T (99.8%), phylogenetic analysis of housekeeping genes and genome metrics clearly indicated that KIST612 belongs to E. callanderi. The phylogenies showed that KIST612 is closer to E. callanderi DSM 3662T than to E. limosum ATCC 8486T. The ANI between KIST612 and E. callanderi DSM 3662T was 99.8%, which was above the species cut-off of 96%, Meanwhile, the ANI value with E. limosum ATCC 8486T was not significant, showing only 94.6%. The digital DNA-DNA hybridization (dDDH) results also supported the ANI values. The dDDH between KIST612 and E. callanderi DSM 3662T was 98.4%, whereas between KIST612 and E. limosum ATCC 8486T , it was 57.8%, which is lower than the species cut-off of 70%. Based on these findings, we propose the reclassification of E. limosum KIST612 as E. callanderi KIST612.

Gut microbiota-generated metabolites: missing puzzles to hosts' health, diseases, and aging

  • Yan Zhang;Shibo Wei;Hang Zhang;Yunju Jo;Jong-Sun Kang;Ki-Tae Ha;Jongkil Joo;Hyun Joo Lee;Dongryeol Ryu
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.207-215
    • /
    • 2024
  • The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions.

Analysis of the mechanism of fibrauretine alleviating Alzheimer's disease based on transcriptomics and proteomics

  • Lu Han;Weijia Chen;Ying Zong;Yan Zhao;Jianming Li;Zhongmei He;Rui Du
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.4
    • /
    • pp.361-377
    • /
    • 2024
  • The dried rattan stem of the Fibraurea Recisa Pierre plant contains the active ingredient known as fibrauretine (FN). Although it greatly affects Alzheimer's disease (AD), the mechanism of their effects still remains unclear. Proteomics and transcriptomics analysis methods were used in this study to determine the mechanism of FN in the treatment of AD. AD model is used through bilateral hippocampal injection of Aβ1-40. After successful modeling, FN was given for 30 days. The results showed that FN could improve the cognitive dysfunction of AD model rats, reduce the expression of AE and P-Tau, increase the content of acetylcholine and reduce the activity of acetylcholinesterase. The Kyoto Encyclopedia of Genes and Genomes enriched differentially expressed genes and proteins are involved in signaling pathways including metabolic pathway, AD, pathway in cancer, PI3K-AKT signaling pathway, and cAMP signaling pathway. Transcriptomics and proteomics sequencing resulted in 19 differentially expressed genes and proteins. Finally, in contrast to the model group, after FN treatment, the protein expressions and genes associated with the PI3K-AKT pathway were significantly improved in RT-qPCR and Western blot and assays. This is consistent with the findings of transcriptomic and proteomic analyses. Our study found that, FN may improve some symptoms of AD model rats through PI3K-AKT signaling pathway.