• 제목/요약/키워드: metabolic networks

검색결과 54건 처리시간 0.026초

Effects of a Self-Care Reinforcement Program for Socially Vulnerable Elderly Women with Metabolic Syndrome in Korea

  • Park, Mikyung;Sung, Kiwol
    • 지역사회간호학회지
    • /
    • 제30권3호
    • /
    • pp.271-280
    • /
    • 2019
  • Purpose: This study evaluates the efficacy of a Self-Care Reinforcement Program (SCRP) based on the Selection Optimization Compensation (SOC) model, in socially vulnerable elderly women with metabolic syndrome. Methods: This study adopts a pretest-posttest nonequivalent control group design. The participants were 64 socially vulnerable elderly Korean women with metabolic syndrome (experimental group: 31, control group: 33). Participants' body composition analysis, nutrient intake, risk factors of metabolic syndrome, depressive symptoms, and social network were measured. Data were analyzed with an independent t-test; statistical significance levels were set at p<.05. The SCRP, including metabolic syndrome education, nutritional education, exercise, and social network, was performed three times a week for 8 weeks. Results: There were statistically significant differences between the experimental and control groups in terms of systolic blood pressure, diastolic pressure, fasting blood sugar, triglycerides, sodium intake, depressive symptoms, and social networks. Conclusion: The SCRP is effective and can be recommended as a community health nursing intervention for socially vulnerable elderly women with metabolic syndrome.

Resources for Systems Biology Research

  • Kim Jin-Sik;Yun Hong-Seok;Kim Hyun-Uk;Choi Hyung-Seok;Kim Tae-Yong;Woo Han-Min;Lee Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.832-848
    • /
    • 2006
  • Systems biology has recently become an important research paradigm that is anticipated to decipher the metabolic, regulatory, and signaling networks of complex living organisms on the whole organism level. Thus, various research outputs are being generated, along with the development of many tools and resources for systems biology research. Accordingly, this review provides a comprehensive summary of the current resources and tools for systems biology research that will hopefully be helpful to researchers involved in this field. The resources are categorized into the following five groups: genome information and analysis, transcriptome and proteome databases, metabolic profiling and metabolic control analysis, metabolic and regulatory information, and software for computational systems biology. A summary table and some future perspectives are also provided.

Directed Causal Network Construction Using Linkage Analysis with Metabolic Syndrome-Related Expression Quantitative Traits

  • Kim, Kyee-Zu;Min, Jin-Young;Kwon, Geun-Yong;Sung, Joo-Hon;Cho, Sung-Il
    • Genomics & Informatics
    • /
    • 제9권4호
    • /
    • pp.143-151
    • /
    • 2011
  • In this study, we propose a novel, intuitive method of constructing an expression quantitative trait (eQT) network that is related to the metabolic syndrome using LOD scores and peak loci for selected eQTs, based on the concept of gene-gene interactions. We selected 49 eQTs that were related to insulin resistance. A variance component linkage analysis was performed to explore the expression loci of each of the eQTs. The linkage peak loci were investigated, and the "support zone" was defined within boundaries of an LOD score of 0.5 from the peak. If one gene was located within the "support zone" of the peak loci for the eQT of another gene, the relationship was considered as a potential "directed causal pathway" from the former to the latter gene. SNP markers under the linkage peaks or within the support zone were searched for in the database to identify the genes at the loci. Two groups of gene networks were formed separately around the genes IRS2 and UGCGL2. The findings indicated evidence of networks between genes that were related to the metabolic syndrome. The use of linkage analysis enabled the construction of directed causal networks. This methodology showed that characterizing and locating eQTs can provide an effective means of constructing a genetic network.

In Silico Analysis of Lactic Acid Secretion Metabolism through the Top-down Approach: Effect of Grouping in Enzyme kinetics

  • Jin, Jong-Hwa;Lee, Jin-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권5호
    • /
    • pp.462-469
    • /
    • 2005
  • A top-down approach is known to be a useful and effective technique for the design and analysis of metabolic systems. In this Study, we have constructed a grouped metabolic network for Lactococcus lactis under aerobic conditions using grouped enzyme kinetics. To test the usefulness of grouping work, a non-grouped system and grouped systems were compared quantitatively with each other. Here, grouped Systems were designed as two groups according to the extent of grouping. The overall simulated flux values in grouped and non-grouped models had pretty similar distribution trends, but the details on flux ratio at the pyruvate branch point showed a little difference. This result indicates that our grouping technique can be used as a good model for complicated metabolic networks, however, for detailed analysis of metabolic network, a more robust mechanism Should be considered. In addition to the data for the pyruvate branch point analysis, Some major flux control coefficients were obtained in this research.

Fibrin affects short-term in vitro human mesenchymal stromal cell responses to magneto-active fibre networks

  • Spear, Rose L.;Symeonidou, Antonia;Skepper, Jeremy N.;Brooks, Roger A.;Markaki, Athina E.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권3호
    • /
    • pp.143-157
    • /
    • 2015
  • Successful integration of cementless femoral stems using porous surfaces relies on effective periimplant bone healing to secure the bone-implant interface. The initial stages of the healing process involve protein adsorption, fibrin clot formation and cell osteoconduction onto the implant surface. Modelling this process in vitro, the current work considered the effect of fibrin deposition on the responses of human mesenchymal stromal cells cultured on ferritic fibre networks intended for magneto-mechanical actuation of in-growing bone tissue. The underlying hypothesis for the study was that fibrin deposition would support early stromal cell attachment and physiological functions within the optimal regions for strain transmission to the cells in the fibre networks. Highly porous fibre networks composed of 444 ferritic stainless steel were selected due to their ability to support human osteoblasts and mesenchymal stromal cells without inducing untoward inflammatory responses in vitro. Cell attachment, proliferation, metabolic activity, differentiation and penetration into the ferritic fibre networks were examined for one week. For all fibrin-containing samples, cells were observed on and between the metal fibres, supported by the deposited fibrin, while cells on fibrin-free fibre networks (control surface) attached only onto fibre surfaces and junctions. Initial cell attachment, measured by analysis of deoxyribonucleic acid, increased significantly with increasing fibrinogen concentration within the physiological range. Despite higher cell numbers on fibrin-containing samples, similar metabolic activities to control surfaces were observed, which significantly increased for all samples over the duration of the study. It is concluded that fibrin deposition can support the early attachment of viable mesenchymal stromal cells within the inter-fibre spaces of fibre networks intended for magneto-mechanical strain transduction to in-growing cells.

Construction of Comprehensive Metabolic Network for Glycolysis with Regulation Mechanisms and Effectors

  • JIN, JONG-HWA;JUNG, UI-SUB;JAE, WOOK-NAM;IN, YONG-HO;LEE, SANG-YUP;LEE, DOHE-ON;LEE, JIN-WON
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.161-174
    • /
    • 2005
  • Abstract Glycolysis has a main function to provide ATP and precursor metabolites for biomass production. Although glycolysis is one of the most important pathways in cellular metabolism, the details of its regulation mechanism and regulating chemicals are not well known yet. The regulation of the glycolytic pathway is very robust to allow for large fluxes at almost constant metabolite levels in spite of changing environmental conditions and many reaction effectors like inhibitors, activating compounds, cofactors, and related metal ions. These changing environmental conditions and metabolic reaction effectors were focused on to understand their roles in the metabolic networks. In this study, we have investigated for construction of the regulatory map of the glycolytic metabolic network and tried to collect all the effectors as much as possible which might affect the glycolysis metabolic pathway. Using the results of this study, it is expected that a complex metabolic situation can be more precisely analyzed and simulated by using available programs and appropriate kinetic data.

ARACNE를 이용한 미생물 Metabolic network의 기능적 연관성 분석 (Quantitative Relationship Analysis of Bacterial Metabolic Network using ARACNE)

  • ;홍순호
    • KSBB Journal
    • /
    • 제24권3호
    • /
    • pp.287-290
    • /
    • 2009
  • 최근 미생물을 이용하여 기존에 화학산업을 통하여 생산되어지던 여러 화학물질 혹은 대사산물을 생산하려는 연구가 활발히 이루어지고 있다. 이러한 연구를 통하여 미생물의 대사특성을 개량하기 위하여는, 미생물의 대사 특성을 분석하는 연구가 일차적으로 수행되어져야 한다. 본 연구에서는 대사network간의 기능적 연관성을 분석하기 위하여 transcriptome 연구에 주로 활용되던 ARACNE 기법이 활용되었다. 특정 대사 subpathway들이 미생물 균주들 사이에 존재하는 패턴이 유사하다면 그 대사 subpathway들이 서로 기능적 상관관계를 가지고 있을 가능성이 높다는 가정 하에, ARACNE를 활용하여 미생물들의 subrathway들의 존재 패턴을 분석함으로서 각 subpathway 사이의 기능적 상관관계를 분석하여 보았다. 본 연구에 활용된 새로운 대사network 분석기법을 활용한다면 더욱 효율적인 대사network 분석연구가 수행될 수 있을 것이라 기대된다.

A Discrete Mathematical Model Applied to Genetic Regulation and Metabolic Networks

  • Asenjo, J.A.;Ramirez, P.;Rapaport, I.;Aracena, J.;Goles, E.;Andrews, B.A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.496-510
    • /
    • 2007
  • This paper describes the use of a discrete mathematical model to represent the basic mechanisms of regulation of the bacteria E. coli in batch fermentation. The specific phenomena studied were the changes in metabolism and genetic regulation when the bacteria use three different carbon substrates (glucose, glycerol, and acetate). The model correctly predicts the behavior of E. coli vis-a-vis substrate mixtures. In a mixture of glucose, glycerol, and acetate, it prefers glucose, then glycerol, and finally acetate. The model included 67 nodes; 28 were genes, 20 enzymes, and 19 regulators/biochemical compounds. The model represents both the genetic regulation and metabolic networks in an integrated form, which is how they function biologically. This is one of the first attempts to include both of these networks in one model. Previously, discrete mathematical models were used only to describe genetic regulation networks. The study of the network dynamics generated 8 $(2^3)$ fixed points, one for each nutrient configuration (substrate mixture) in the medium. The fixed points of the discrete model reflect the phenotypes described. Gene expression and the patterns of the metabolic fluxes generated are described accurately. The activation of the gene regulation network depends basically on the presence of glucose and glycerol. The model predicts the behavior when mixed carbon sources are utilized as well as when there is no carbon source present. Fictitious jokers (Joker1, Joker2, and Repressor SdhC) had to be created to control 12 genes whose regulation mechanism is unknown, since glycerol and glucose do not act directly on the genes. The approach presented in this paper is particularly useful to investigate potential unknown gene regulation mechanisms; such a novel approach can also be used to describe other gene regulation situations such as the comparison between non-recombinant and recombinant yeast strain, producing recombinant proteins, presently under investigation in our group.

대사산물 과량생산을 위한 미생물 균주의 시스템 생물학 연구 및 대사특성 개량 (Systems Biology Studies and Metabolic Modification of Metabolites Producing Bacteria)

  • 홍순호
    • Korean Chemical Engineering Research
    • /
    • 제45권6호
    • /
    • pp.529-535
    • /
    • 2007
  • 최근 DNA microarray, 2-D gel, MS/MS 등 다양한 high-throughput 기술의 발달에 힘입어 생명체의 복잡한 대사특성을 종합적으로 분석하려는 시도가 이루어지고 있으며, 이를 시스템 생물학이라 칭하고 있다. 특히 근래에 들어 고유가 등 산업환경의 변화에 따라 미생물의 대사특성을 개량하여 다양한 화학물질들을 생물학적으로 생산하려는 연구가 최근 많은 관심을 얻고 있으며, 이를 위하여 다양한 시스템 생물학 혹은 시스템 생물공학 연구가 수행되어져 왔다. 본 총설에서는 시스템 생물공학 연구에 대한 소개 및 사용되는 여러 연구전략들을 소개하고, 이러한 시스템 생물공학 연구들이 실제 대사산물 생산균주의 개량에 어떻게 적용되었는지 살펴보고자 한다.