• 제목/요약/키워드: metabolic activity

검색결과 1,173건 처리시간 0.024초

Streptomyces fradiae에서 대사중간산물 이용속도에 의한 균체 성장과 tylosin 생합성의 조절 (Regulation of Cell Growth and Tylosin Biosynthesis through Flux Control of Metabolic Intermediate in Streptomyces fradiae)

  • 강현아;이계준
    • 미생물학회지
    • /
    • 제25권3호
    • /
    • pp.189-197
    • /
    • 1987
  • 배지성분으로 첨가된 glutamate의 농도가 균의성장고 tylosin 생합성에 미치는 영향을 조사하였다. 그 결과 oxaloacetate를 공동기질로 사용하는 효소의 활성에 의하여 균의 성장과 tylosin의 생합성이 조절됨을 알았다. 즉, citrate synthase와 aspartate aminotransferase의 활성은 균의 성장에 아주 긴요하며 methylmalonyl-CoA carboxytransferase의 활성은 tylosin 생합성에 아주 중요한 효소임을 알았다. Glutamate의 농도는 우의 효소의 활성에 직접적으로 영향을 주고 있음을 알았다.

  • PDF

체중 증가의 관련 요인과 예방책 (Factors Associated with Weight Gain and Its Prevention Strategies)

  • 김승희
    • 비만대사연구학술지
    • /
    • 제2권2호
    • /
    • pp.37-44
    • /
    • 2023
  • Weight gain is defined as the increase in body weight, increasing the prevalence of obesity, and results in metabolic diseases. Weight gain was reportedly caused by the interaction between the obesogenic environmental factors and individual metabolic factors. Sociodemographic and environmental factors (demographic factors, lifestyle/behavioral factors, food/nutritional factors, socioeconomic factors), drug-related secondary causes (some of the corticosteroids, antihyperglycemics, antihypertensives, antidepressants, etc.), and metabolic factors (aging and hormonal changes, menopause and decreased sex hormones, decreased adipocyte degradation, decreased fibroblast growth factor 21, central sympathetic nervous system hyperactivity, decreased sympathetic-adrenomedullary system activity) are significant factors related to weight gain. It is crucial to prevent weight gain and maintain an ideal weight, but studies on the risk factors of weight gain are insufficient. Therefore, this study evaluated the factors associated with weight gain to find strategies for preventing unnecessary weight gain.

Unraveling dynamic metabolomes underlying different maturation stages of berries harvested from Panax ginseng

  • Lee, Mee Youn;Seo, Han Sol;Singh, Digar;Lee, Sang Jun;Lee, Choong Hwan
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.413-423
    • /
    • 2020
  • Background: Ginseng berries (GBs) show temporal metabolic variations among different maturation stages, determining their organoleptic and functional properties. Methods: We analyzed metabolic variations concomitant to five different maturation stages of GBs including immature green (IG), mature green (MG), partially red (PR), fully red (FR), and overmature red (OR) using mass spectrometry (MS)-based metabolomic profiling and multivariate analyses. Results: The partial least squares discriminant analysis score plot based on gas chromatography-MS datasets highlighted metabolic disparity between preharvest (IG and MG) and harvest/postharvest (PR, FR, and OR) GB extracts along PLS1 (34.9%) with MG distinctly segregated across PLS2 (18.2%). Forty-three significantly discriminant primary metabolites were identified encompassing five developmental stages (variable importance in projection > 1.0, p < 0.05). Among them, most amino acids, organic acids, 5-C sugars, ethanolamines, purines, and palmitic acid were detected in preharvest GB extracts, whereas 6-C sugars, phenolic acid, and oleamide levels were distinctly higher during later maturation stages. Similarly, the partial least squares discriminant analysis based on liquid chromatography-MS datasets displayed preharvest and harvest/postharvest stages clustered across PLS1 (11.1 %); however, MG and PR were separated from IG, FR, and OR along PLS2 (5.6 %). Overall, 24 secondary metabolites were observed significantly discriminant (variable importance in projection > 1.0, p < 0.05), with most displaying higher relative abundance during preharvest stages excluding ginsenosides Rg1 and Re. Furthermore, we observed strong positive correlations between total flavonoid and phenolic metabolite contents in GB extracts and antioxidant activity. Conclusion: Comprehending the dynamic metabolic variations associated with GB maturation stages rationalize their optimal harvest time per se the related agroeconomic traits.

N. muscorum과 담배 배양세포의 공생유도에 따른 질소대사에 관여하는 효소활성의 변화 (Changes of Enzyme Activity in Nitrogen Metabolism on Induced Association of N. muscorum with Cultured Tobacco Cells)

  • 정현숙
    • KSBB Journal
    • /
    • 제5권2호
    • /
    • pp.151-158
    • /
    • 1990
  • 부질소 1-B5 배지에서 단독 배양한 담배 배양세표의 nitrate reductase 활성은 1-B5 배지에서 배양한 담배 배양세포에 비해 50% 이상 감소되었으나 $10^{-4}$ sper-mine 처리구에서는 그 활성이 가장 증가되었으며, N.muscorum파 혼합 배양시 그 활성이 현저히 증가한 반면 polyamine은 거의 영향을 미치지 않았다. Glutamate dehydrogenase 는 혼합 배양시 담배 배양세포플 단독 배양하였플 때보다 약 4배 감소 되었으며, glutamate synthas$\xi$의 활성은 $10^{-4}M$ spermlne 처리구에서 혼합 배양 하였을 때 그 활성이 가장 높았다.

  • PDF

한국인의 Aldosterone 대사 제거율에 미치는 Na 섭취제한, K 보충투여 및 이뇨의 영향 (Effects of Na Restriction, K Supplement and Diuresis on Aldosterone Metabolic Clearance in the Normal Korean)

  • 성호경
    • The Korean Journal of Physiology
    • /
    • 제11권1호
    • /
    • pp.37-44
    • /
    • 1977
  • In the previous study of the release, excretion, and plasma concentration of aldosterone in normal Koreans, the author found that urinary aldosterone excretion and aldosterone secretion rate of the Korean who usually take high amount of salt are significantly lower, in compared to Americans, although the plasma concentration is only tended to be low. The control of plasma aldosterone level depends on the secretion rate and the metabolic clearance of the hormone. In this experiments, the metabolic clearance rate of aldosterone was determined in normotensive korean and the effects of adrenal stimulations on the rates were also studied in the same subjects. The metabolic clearance rate of the normal Korean was not significantly different from those of the American, and shown a little increase in response to sodium restriction. These results indicate that the decrease in secretion rate rather than the increase in metabolic clearance Tate is the major factor maintaining lower plasma aldosterone level. After furosemide diuresis, on the contrary, the removal of aldosterone showed significant the decrease despite slight increase of secretion rate. This suggest that the reduction in metabolic clearance rate of the hormone during volume depletion found to be major cause of high plasma concentration. Additional potassium supply produced detectable decrease of metabolic clearance rate, but the changes were smaller than that of secretion rate, which suggested that the higher secretion rate could account for elevated plasma concentration of aldosterone rather than metabolic clearance. Above results also support author's previous evidences that the normal Korean who already adapted to a high sodium diet have ability to produce adequate aldosterone activity without producing detectable changes on the metabolic clearance rate under the condition of sodium restriction with approp riate potassium intake.

  • PDF

A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts

  • Lee, Hyunji;Hong, Youngeun;Tran, Quangdon;Cho, Hyeonjeong;Kim, Minhee;Kim, Chaeyeong;Kwon, So Hee;Park, SungJin;Park, Jongsun;Park, Jisoo
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.431-441
    • /
    • 2019
  • Background: The efficacy of ginseng, the representative product of Korea, and its chemical effects have been well investigated. The ginsenoside RG3 has been reported to exhibit apoptotic, anticancer, and antidepressant-like effects. Methods: In this report, the putative effect of RG3 on several cellular function including cell survival, differentiation, development and aging process were evaluated by monitoring each specific marker. Also, mitochondrial morphology and function were investigated in ultraviolet (UV)-irradiated normal human dermal fibroblast cells. Results: RG3 treatment increased the expression of extracellular matrix proteins, growth-associated immediate-early genes, and cell proliferation genes in UV-irradiated normal human dermal fibroblast cells. And, RG3 also resulted in enhanced expression of antioxidant proteins such as nuclear factor erythroid 2-related factor-2 and heme oxygenase-1. In addition, RG3 affects the morphology of UV-induced mitochondria and plays a role in protecting mitochondrial dysfunction. Conclusioin: RG3 restores mitochondrial adenosine triphosphate (ATP) and membrane potential via its antioxidant effects in skin cells damaged by UV irradiation, leading to an increase in proteins linked with the extracellular matrix, cell proliferation, and antioxidant activity.

A systematic review of the biological mechanisms linking physical activity and breast cancer

  • Hong, Bok Sil;Lee, Kang Pa
    • 운동영양학회지
    • /
    • 제24권3호
    • /
    • pp.25-31
    • /
    • 2020
  • [Purpose] Epidemiological evidence has shown that leisure-time physical activity and structured exercise before and after breast cancer diagnosis contribute to reducing the risk of breast cancer recurrence and mortality. Thus, in this review, we aimed to summarize the physical activity-dependent regulation of systemic factors to understand the biological and molecular mechanisms involved in the initiation, progression, and survival of breast cancer. [Methods] We systematically reviewed the studies on 1) the relationship between physical activity and the risk of breast cancer, and 2) various systemic factors induced by physical activity and exercise that are potentially linked to breast cancer outcomes. To perform this literature review, PubMed database was searched using the terms "Physical activity OR exercise" and "breast cancer", until August 5th, 2020; then, we reviewed those articles related to biological mechanisms after examining the resulting search list. [Results] There is strong evidence that physical activity reduces the risk of breast cancer, and the protective effect of physical activity on breast cancer has been achieved by long-term regulation of various circulatory factors, such as sex hormones, metabolic hormones, inflammatory factors, adipokines, and myokines. In addition, physical activity substantially alters wholebody homeostasis by affecting numerous other factors, including plasma metabolites, reactive oxygen species, and microRNAs as well as exosomes and gut microbiota profile, and thereby every cell and organ in the whole body might be ultimately affected by the biological perturbation induced by physical activity and exercise. [Conclusion] The understanding of integrative mechanisms will enhance how physical activity can ultimately influence the risk and prognosis of various cancers, including breast cancer. Furthermore, physical activity could be considered an efficacious non-pharmacological therapy, and the promotion of physical activity is probably an effective strategy in primary cancer prevention.

Is the association of continuous metabolic syndrome risk score with body mass index independent of physical activity? The CASPIAN-III study

  • Heshmat, Ramin;shafiee, Gita;Kelishadi, Roya;Babaki, Amir Eslami Shahr;Motlagh, Mohammad Esmaeil;Arefirad, Tahereh;Ardalan, Gelayol;Ataie-Jafari, Asal;Asayesh, Hamid;Mohammadi, Rasool;Qorbani, Mostafa
    • Nutrition Research and Practice
    • /
    • 제9권4호
    • /
    • pp.404-410
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Although the association of body mass index (BMI) with metabolic syndrome (MetS) is well documented, there is little knowledge on the independent and joint associations of BMI and physical activity with MetS risk based on a continuous scoring system. This study was designed to explore the effect of physical activity on interactions between excess body weight and continuous metabolic syndrome (cMetS) in a nationwide survey of Iranian children and adolescents. SUBJECTS/METHODS: Data on 5,625 school students between 10 and 18 years of age were analyzed. BMI percentiles, screen time activity (STA), leisure time physical activity (LTPA) levels, and components of cMetS risk score were extracted. Standardized residuals (z-scores) were calculated for MetS components. Linear regression models were used to study the interactions between different combinations of cMetS, LTPA, and BMI percentiles. RESULTS: Overall, 984 (17.5%) subjects were underweight, whereas 501 (8.9%) and 451 (8%) participants were overweight and obese, respectively. All standardized values for cMetS components, except fasting blood glucose level, were directly correlated with BMI percentiles in all models (P-trend < 0.001); these associations were independent of STA and LTPA levels. Linear associations were also observed among LTPA and standardized residuals for blood pressure, high-density lipoprotein, and waist circumference (P-trend < 0.01). CONCLUSIONS: Our findings suggest that BMI percentiles are associated with cMetS risk score independent of LTPA and STA levels.

Sodium butyrate has context-dependent actions on dipeptidyl peptidase-4 and other metabolic parameters

  • Lee, Eun-Sol;Lee, Dong-Sung;Pandeya, Prakash Raj;Kim, Youn-Chul;Kang, Dae-Gil;Lee, Ho-Sub;Oh, Byung-Chul;Lee, Dae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.519-529
    • /
    • 2017
  • Sodium butyrate (SB) has various metabolic actions. However, its effect on dipeptidyl peptidase 4 (DPP-4) needs to be studied further. We aimed to evaluate the metabolic actions of SB, considering its physiologically relevant concentration. We evaluated the effect of SB on regulation of DPP-4 and its other metabolic actions, both in vitro (HepG2 cells and mouse mesangial cells) and in vivo (high fat diet [HFD]-induced obese mice). Ten-week HFD-induced obese C57BL/6J mice were subjected to SB treatment by adding SB to HFD which was maintained for an additional 16 weeks. In HepG2 cells, SB suppressed DPP-4 activity and expression at sub-molar concentrations, whereas it increased DPP-4 activity at a concentration of $1,000{\mu}M$. In HFD-induced obese mice, SB decreased blood glucose, serum levels of insulin and $IL-1{\beta}$, and DPP-4 activity, and suppressed the increase in body weight. On the contrary, various tissues including liver, kidney, and peripheral blood cells showed variable responses of DPP-4 to SB. Especially in the kidney, although DPP-4 activity was decreased by SB in HFD-induced obese mice, it caused an increase in mRNA expression of $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$. The pro-inflammatory actions of SB in the kidney of HFD-induced obese mice were recapitulated by cultured mesangial cell experiments, in which SB stimulated the secretion of several cytokines from cells. Our results showed that SB has differential actions according to its treatment dose and the type of cells and tissues. Thus, further studies are required to evaluate its therapeutic relevance in metabolic diseases including diabetes and obesity.