• Title/Summary/Keyword: message-passing program

Search Result 28, Processing Time 0.023 seconds

Large Eddy Simulation of Turbulent Flow around a Ship Model Using Message Passing Interface (병렬계산기법을 이용한 선체주위 점성유동장의 LES해석)

  • Choi, Hee-Jong;Yoon, Hyun-Sik;Chun, Ho-Hwan;Kang, Dae-Hwan;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.76-82
    • /
    • 2006
  • The large-eddy simulation(LES) technique, based an a message passing interface method(MPI), was applied to investigate the turbulent flaw phenomena around a ship. The Smagorinski model was used in the present LES simulation to simulate the turbulent flaw around a ship. The SPMD(sidsngle program multiple data) technique was used for parallelization of the program using MPI. All computations were performed an a 24-node PC cluster parallel machine, composed of 2.6 GHz CPU, which had been installed in the Advanced Ship Engineering Research Center(ASERC). Numerical simulations were performed for the Wigley hull, and the Series 60 hull(CB=0.6) using 1/4-, 1/2-, 1- and 2-million grid systems and the computational results had been compared to the experimental ones.

MPIRace-Check V 1.0: A Tool for Detecting Message Races in MPI Parallel Programs (MPIRace-Check V 1.0: MPI 병렬 프로그램의 메시지경합 탐지를 위한 도구)

  • Park, Mi-Young;Chung, Sang-Hwa
    • The KIPS Transactions:PartA
    • /
    • v.15A no.2
    • /
    • pp.87-94
    • /
    • 2008
  • Message races should be detected for debugging effectively message-passing programs because they can cause non-deterministic executions of a program. Previous tools for detecting message races report that message races occur in every receive operation which is expected to receive any messages. However message races might not occur in the receive operation if each of messages is transmitted through a different logical communication channel so that their incorrect detection makes it a difficult task for programmers to debug programs. In this paper we suggest a tool, MPIRace-Check, which can exactly detect message races by checking the concurrency between send/receive operations, and by inspecting the logical communication channels of the messages. To detect message races, this tool uses the vector timestamp to check if send and receive operations are concurrent during an execution of a program and it also uses the message envelop to inspect if the logical communication channels of transmitted messages are the same. In our experiment, we show that our tool can exactly detect message races with efficiency using MPI_RTED and a benchmark program. By detecting message races exactly, therefore, our tool enables programmers to develop reliable parallel programs reducing the burden of debugging.

Parallelization of sheet forming analysis program using MPI (MPI를 이용한 판재성형해석 프로그램의 병렬화)

  • Kim, Eui-Joong;Suh, Yeong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.132-141
    • /
    • 1998
  • A parallel version of sheet forming analysis program was developed. This version is compatible with any parallel computers which support MPI that is one of the most recent and popular message passing libraries. For this purpose, SERI-SFA, a vector version which runs on Cray Y-MP C90, a sequential vector computer, was used as a source code. For the sake of the effectiveness of the work, the parallelization was focused on the selected part after checking the rank of CPU consumed from the exemplary calculation on Cray Y-MP C90. The subroutines associated with contact algorithm was selected as targe parts. For this work, MPI was used as a message passing library. For the performance verification, an oil pan and an S-rail forming simulation were carried out. The performance check was carried out by the kernel and total CPU time along with theoretical performance using Amdahl's Law. The results showed some performance improvement within the limit of the selective paralellization.

An Implementation of Fault-Tolerant Message Passing Interface on Parallel Computers (병렬 컴퓨터에서의 결함 허용 메시지 전달 인터페이스 구현)

  • Song, Dae-Ki;Lee, Cheol-Hoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.3
    • /
    • pp.319-328
    • /
    • 2000
  • The Message-Passing Interface(MPI) is a standard interface for parallel programming environment, based on that application programs run on the processors of a parallel computer. Processor nodes execute processes consisting the program by passing messages to one another. During executing, however, if a fault occurs on a processor node or a process, this will result an inconsistent state, and consequently, the whole program will have to be stopped. To solve this problem, in this paper, we propose a fault-tolerant message passing interface(FT-MPI) by adding a fault manager module to MPI. The proposed FT-MPI does not need any hardware support, and each application program based on MPI can run on the FT-MPI without any modification. The proposed fault tolerance scheme uses the so-called hot-spare process duplication method, and verified by simulations that application programs run despite of any fault with less than 5% overhead on execution time.

  • PDF

On-the-fly Detection of Race Conditions in Message-Passing Programs (메시지 전달 프로그램에서의 수행 중 경합탐지)

  • Park, Mi-Young;Kang, Moon-Hye;Jun, Yong-Kee;Park, Hyuk-Ro
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.7
    • /
    • pp.267-275
    • /
    • 2007
  • Message races should be detected for debugging message-passing parallel programs because they can cause non-deterministic executions. Specially, it is important to detect the first race in each process because the first race can cause the occurrence of the other races in the same process. The previous techniques for detecting the first races require more than two monitored runs of a program or analyze a trace file which size is proportional to the number of messages. In this paper we introduce an on-the-fly technique to detect the first race in each process without generating any trace file. In the experiment we test the accuracy of our technique with some benchmark programs and it shows that our technique detects the first race in each process in all benchmark programs.

Race State Transition for Detecting Unaffected Race Conditions in Message-Passing Programs (메시지전달 프로그램의 영향받지 않은 경합조건 탐지를 위한 경합상태 전이기법)

  • Park Mi-Young;Kang Hyun-Syug;Jun Yong-Kee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.8
    • /
    • pp.495-504
    • /
    • 2006
  • Detecting unaffected race conditions is important to debugging message-passing programs effectively, because such a message race can affect other races to occur or not. The previous technique to detect efficiently unaffected races detects racing messages by halting at the receive event of the first race to occur in each process. However this technique does not guarantee that all of the detected races are unaffected, because halting such processes does disconnect some chain of affects-relations among those races. In this paper, we present a novel technique that manages the state of the detected race by examining if every received message is affected until the execution terminates. Our technique therefore guarantees to detect efficiently the unaffected races, because it maintains affects-relations of the races all along the execution of program.

PARALLEL IMPROVEMENT IN STRUCTURED CHIMERA GRID ASSEMBLY FOR PC CLUSTER (PC 클러스터를 위한 정렬 중첩 격자의 병렬처리)

  • Kim, Eu-Gene;Kwon, Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.157-162
    • /
    • 2005
  • Parallel implementation and performance assessment of the grid assembly in a structured chimera grid approach is studied. The grid assembly process, involving hole cutting and searching donor, is parallelized on the PC cluster. A message passing programming model based on the MPI library is implemented using the single program multiple data(SPMD) paradigm. The coarse-grained communication is optimized with the minimized memory allocation because that the parallel grid assembly can access the decomposed geometry data in other processors by only message passing in the distributed memory system such as a PC cluster. The grid assembly workload is based on the static load balancing tied to flow solver. A goal of this work is a development of parallelized grid assembly that is suited for handling multiple moving body problems with large grid size.

  • PDF

A Shortest Path Allocation Algorithm for the Load Balancing in Hypercubes (하이퍼큐브 상에서의 부하 분산을 우한 최단 경로 할당 알고리듬)

  • 이철원;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.4
    • /
    • pp.27-36
    • /
    • 1993
  • This paper proposes a shortest path allocation algorithm over the processors on the hypercube system based on the message passing techniques with the optimized module allocation. On multiprocessor systems, how to divide one task into multiple tasks efficiently is an important issue due to the hardness of the life cycle estimation of each process. To solve the life cycle discrepancies, the appropriate task assignment to each processor and the flexible communications among the processors are indispensible. With the concurrent program execution on hypercube systems, each process communicaties to others with the method of message passing. And, each processor has its own memory. The proposed algorithm generates a callable tree out of the module, assigns the weight factors, constructs the allocation graph, finds the shortest path allocation tree, and maps them with hypercube.

  • PDF

Parallel VHDL Simulation on IBM SP2 and SGI Origin 2000 (IBM SP2와 SGI Origin 2000에서의 병렬 VHDL 시뮬레이션)

  • 정영식
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.1
    • /
    • pp.69-83
    • /
    • 1998
  • In this paper, we present the results of simulation by running parallel VHDL simulation on typical MPP(Massively Parallel Processor) systems such as IBM SP2 and SGI Origin 2000. Parallel simulation uses the synchronous protocol and parallel program is implemented using MPI(Message Passing Interface) based on message passing model, so that it can urn on any parallel programming environment which supports MPI, a standard communication library. And then GVT(Global Virtual Time) computation for parallel simulation is based on the global broadcasting with MPI_Bcast(), which is a standard function in MPI and piggybacking. Our benchmark exhibits that as size of VHDL grows, the parallel simulation has a better performance compared with the sequential simulation. In addition, we also show the results of comparison between IBM SP2 and SGI Origin 2000 by applying the same application to those indirectly.

  • PDF

Design and Implementation of a Grid System META for Executing CFD Analysis Programs on Distributed Environment (분산 환경에서 CFD 분석 프로그램 수행을 위한 그리드 시스템 META 설계 및 구현)

  • Kang, Kyung-Woo;Woo, Gyun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.6 s.103
    • /
    • pp.533-540
    • /
    • 2006
  • This paper describes the design and implementation of a grid system META (Metacomputing Environment using Test-run of Application) which facilitates the execution of a CFD (Computational Fluid Dynamics) analysis program on distributed environment. The grid system META allows the CFD program developers can access the computing resources distributed over the network just like one computer system. The research issues involved in the grid computing include fault-tolerance, computing resource selection, and user-interface design. In this paper, we exploits an automatic resource selection scheme for executing the parallel SPMD (Single Program Multiple Data) application written in MPI (Message Passing Interface). The proposed resource selection scheme is informed from the network latency time and the elapsed time of the kernel loop attained from test-run. The network latency time highly influences the executional performance when a parallel program is distributed and executed over several systems. The elapsed time of the kernel loop can be used as an estimator of the whole execution time of the CFD Program due to a common characteristic of CFD programs. The kernel loop consumes over 90% of the whole execution time of a CFD program.