• Title/Summary/Keyword: mesozooplankton biomass

Search Result 14, Processing Time 0.022 seconds

Effect of El Niño/Na Niña on Mesozooplankton Biomass in the Northwestern Subtropical Pacific Warm Pool and the Northern East China Sea (엘니뇨/라니냐가 북서태평양 아열대 난수역과 북부동중국해의 중형동물플랑크톤 생체량에 미치는 영향)

  • Kang, Hyung-Ku;Shin, Chang-Woong;Jeon, Dongchull
    • Ocean and Polar Research
    • /
    • v.37 no.3
    • /
    • pp.189-200
    • /
    • 2015
  • Mesozooplankton biomass including total biomass and size-fractionated biomass and the abundance of major taxonomic groups of copepods were studied in the Northwestern Subtropical Pacific Warm Pool (NSPWP) and the Northern East China Sea (NECS) from 2006 to 2014. Mesozooplankton biomass ranged from 0.69 to $3.08mgC/m^3$ (mean $1.12mgC/m^3$) in the NSPWP and from 10.60 to $69.10mgC/m^3$ (mean $30.33mgC/m^3$) in the NECS with higher values in spring than fall. Percent composition in the biomass of each size group of mesozooplankton varied interannually both in the NSPWP and in the NECS. The smallest size group (0.2~0.5 mm) contributed the least to total biomass in both regions, but significantly higher in the NSPWP than in the NECS. The percent composition in abundance of copepod taxonomic groups (i.e. Calanoida, Cyclopoida, and Poecilostomatoida) also fluctuated interannually. Mean composition of calanoid copepods was higher in the NECS than in the NSPWP, but the opposite pattern was observed for poecilostomatoid copepods. Mesozooplankton biomass both in the NSPWP and in the NECS was negatively correlated with Oceanic $Ni{\tilde{n}}o$ Index (ONI), indicating declines in biomass during El $Ni{\tilde{n}}o$ periods and vice versa during Na $Ni{\tilde{n}}a$ period. The effect of El $Ni{\tilde{n}}o$ on variation of mesozooplankton biomass was more prominent in the NSPWP than in the NECS. These results suggest that mesozooplankton biomass both in the NSPWP and in the NECS responded to El $Ni{\tilde{n}}o$ events, although the biological process that explain the reduced mesozooplankton biomass might be different in both regions.

Latitudinal Distribution of Mesozooplankton Community in the Northwestern Pacific Ocean (북서태평양의 위도별 중형동물플랑크톤의 분포 특성)

  • Lee, Chang-Rae;Kang, Hyung-Ku;Choi, Keun-Hyung
    • Ocean and Polar Research
    • /
    • v.33 no.spc3
    • /
    • pp.337-347
    • /
    • 2011
  • We investigated latitudinal changes in mesozooplankton community structure during a cruise between October 16 and November 30 of 2007 from four distinctive regions in the northwestern Pacific Ocean: Warm pool area (longitude $135^{\circ}$ line), Philippine EEZ (PEEZ), Japan EEZ (JEEZ), and East China Sea (ECS). Major taxa of numerical importance were Clausocalanidae (Clausocalanus spp.), Oncaeidae (Oncaea spp.), and Oithonidae (Oithona spp.) in oligotrophic regions, however Paracalanidae (Paracalanus spp.) was the most abundant group in the ECS. Mesozooplankton size group of <1 mm dominated in PEEZ and WP (48% and 56%, respectively), but mesozooplankton (>1 mm) were of importance in the JEEZ and ECS (34% and 38%, respectively). Mesozooplankton biomass and abundance were high in the JEEZ and ECS, and low in the oligotrophic WP and PEEZ waters, with positive relationship with both total Chl-a and heterotrophic protist biomass. Latitudinal change in mesozooplankton community structure was related with water temperature, with copepods such as Lucicutia spp. and Pleuromamma spp. being present only in warm waters. The geographical expansion of mesozooplankton with a preference for warmer waters could potentially be useful as an indicator for detecting ocean warming.

Mesozooplankton Community Structure in the Yellow Sea in Spring (봄철 황해의 중형동물플랑크톤 군집 구조)

  • Kim, Garam;Kang, Hyung-Ku
    • Ocean and Polar Research
    • /
    • v.42 no.4
    • /
    • pp.271-281
    • /
    • 2020
  • We investigated mesozooplankton in the Yellow Sea in spring to understand its community structure and relationship with environmental factors. Total mesozooplankton density ranged from 1,542 to 7,367 ind. m-3 and the biomass ranged from 3 to 42 mg C m-3. The total density and biomass had a positive relationship with chlorophyll-a (chl-a) concentration. The mesozooplankton community was divided into two groups at 125.5 E by cluster analysis: one was an inshore group and the other was an offshore group. The inshore group of mesozooplankton was of high density but low diversity, while the offshore group was of high diversity but low density. Copepod Acartia hongi and its copepodites were the most abundant species, comprising 27.8% of the total mesozooplankton density. A. hongi was especially abundant at the inshore, serving as the indicator species of the inshore group. Redundancy analysis found a positive relationship between the density of A. hongi and chl-a concentration. Oithona similis and Centropages abdominalis were 2nd and 3rd dominant species comprising 9 and 7% of the total density, respectively. The density of O. similis was positively related to water depth, but C. abdominalis was related to chl-a concentration. Chl-a concentration seems to influence significantly the mesozooplankton community structure in the Yellow Sea in spring, rather than water temperature or salinity.

Microzooplankton Assemblages: Their Distribution, Trophic Role and Relationship to the Environmental Variables

  • Park, Gyung-Soo;Choi, Joong-Ki
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.145-155
    • /
    • 1997
  • The distribution of microzooplankton and hydrographic variables were measured in the Virginia portion of Chesapeake Bay and its major rivers. Samples were collected at 14 locations at monthly interval from September 1993 through December 1995. Ciliates were numerically dominated (>90%) and copepod nauplii comprised highest proportion of the total microzooplankton biomass (>77%). Copepod nauplii and ciliates were the most abundant at oligohaline water and rotifers at freshwater. Total microzooplankton density and biomass were usually higher at oligohaline stations than fresh water and polyhaline stations. Despite high nutrient concentration and phytoplankton density at eutrophic water, micro- and mesozooplankton biomass were low. Mesozooplankton were relatively abundant at polyhaline stations. The comparison between annual mean biomass of ciliates (12.7 ${\mu$}gC/1) and that of autotrophic picoplankton (13.5 {$\mu$}gC/1) revealed that ciliates were a major consumer of picoplankton production. The secondary production by ciliates was 12.7 ${\mu}$gC/1/day, representing 5% of the annual mean primary production in Chesapeake Bay, Total microzooplankton comprised 84% of the total zooplankton carbon content, representing five times higher than mesozooplankton biomass.

  • PDF

Mesozooplankton Community Structure in the Yellow Sea in Summer (여름철 황해의 중형동물플랑크톤 군집 구조)

  • Kim, Garam;Kang, Hyung–Ku
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.269-277
    • /
    • 2021
  • We investigated mesozooplankton community in the Yellow Sea in summer immediately after the typhoon passed. Total mesozooplankton density ranged from 1,323 to 6,397 ind. m-3 and the biomass ranged from 3 to 28 mg C m-3 by stations. The dominant species of the research area were Paracalanus parvus s.l., Oithona atlantica, Acartia omorii, Oikopleuridae, Sagittoidae juvenile and Calanus sinicus in that order. Mesozooplankton community was divided into two groups by cluster analysis : the stations located in coastal and open seas as one group, and the stations located in the middle into another group. The number of species, density and richness of mesozooplankton were significantly lower in the middle region. Mesozooplankton density and biomass were not significantly correlated with chl-a concentrations, unlike previous studies in spring and autumn. This community characteristic in summer may be due to the passing of the typhoon, or other environmental influences.

Identification of Microzooplankton Seasonality Using Time Series Analysis

  • Park, Gyung-Soo;Harold G. Marshall
    • Animal cells and systems
    • /
    • v.2 no.2
    • /
    • pp.165-176
    • /
    • 1998
  • Seasonal changes in microzooplankton abundance were identified in the mesohaline Chesapeake Bay and several tributaries from July 1992 through December 1995. Ciliates numerically dominated, comprising over 90% of the total microzooplankton density and aloricate ciliates usually outnumbered loricate ciliates. Copepod nauplii accounted for the highest microzooplankton biomass (>75% in dry weight). Rotifers made small contributions to the total microzooplankton density and biomass (<5%). Time series analysis indicated a twelve month cycle in microzooplankton abundance, and mid-summer(August) peaks for copepod nauplii, and a spring through fall peaks (May-October) for ciliates. Rotifers showed two seasonal peaks: one in mid-summer(August) at the river stations and the other in mid-winter(February) at the mesohaline stations. Seasonal peaks of copepod nauplii and rotifers coincided with the mesozooplankton abundance peak. On the other hand, ciliate maximum usually occurred between the phytoplankton and mesozooplankton peaks. This pattern of microzooplankton seasonality suggests the intermediate trophic role of microzooplankton (especially ciliates) between the phytoplankton(especially picophytoplankton) and mesozooplankton in Chesapeake Bay and its tributaries.

  • PDF

Ecological and Biogeochemical Response of Antarctic Ecosystems to Iron Fertilization and Implications on Global Carbon Cycle

  • Bathmann, Ulrich
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.231-235
    • /
    • 2005
  • The European Iron Fertilization Experiment EIFEX studied the growth and decline of a phytoplankton bloom stimulated by fertilising $10km^2$ in the core of a mesoscale $(80{\times}120km)$ cyclonic eddy south of the Antarctic Polar Front with about 2 times 7 tonnes of iron sulphate. The phytoplankton accumulation induced by iron fertilization did not exceed $3{\mu}g\;chl\;a\;l^{-1}$ despite a draw down of $5{\mu}M$ of nitrate that should have resulted in at least double to triple the amount of phytoplankton biomass assuming regular Redfield-ratios for draw down after phytoplankton growth in the Southern Ocean. During EIFEX the fertilized core of the mesoscale eddy evolved to a hotspot for a variety of small and medium sized mesozooplankton copepods. In contrast to copepods, the biomass of salps (Salpa thompson)) that dominated zooplankton biomass before the onset of our experiment decreased to nearly extinction. Most of the species of the rnosozooplankton community showed extremely hiか feeding rates compared to literature values from Southern Ocean summer communities. At the end of the experiment, massive phytoplankton sedimentation reached the sea floor at about 3800m water depth.

On the Distribution of Zooplankton in the Southeastern Barents Sea during July 2002

  • Lee, Kang-Hyun;Chung, Kyung-Ho;Soh, Ho-Young;Lee, Wonchoel
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.392-399
    • /
    • 2003
  • The spatial distribution and composition of the mesozooplankton community in the southeastern Barents Sea were observed at 17 stations, from 12 to 28 July 2002. Six taxa of zooplankton were found, including tintinnids, copepods, cumaceans, appendicularians, polychaetes, and barnacle larvae. Copepods were dominant, comprising 74% of the community. The copepod species Limnocalanus grimaldii, Pseudocalanus acuspes, Calanus glacialis, Calanus finmarchicus, and Microsetella norvegica, and the cumacean species Diastylis rathkei and Campylaspis rubicunda were identified. The overall mean abundance of the zooplankton was 72 indiv.l0 $\mu \textrm m^{-3}$ in the study area, ranging from 4 to 197 indiv.l0$\mu \textrm m^{-3}$. Zooplankton was more abundant at the oceanic than the coastal stations. The highest biomass measured was 97.4mg $\mu \textrm m^{-3}$, the mean biomass was 36.9 mg 10$\mu \textrm m^{-3}$, 93% of which was copepods. Pseudocalanus acuspes, C. glacialis, and C. finmarchicus predominated, accounting for 61% of abundance and 86% of biomass. Spatial distributions of the zooplankton community in the study area depended on the variations in water temperature and salinity, which were influenced by freshwater runoff from the continent.

Seasonal Variation in Zooplankton Related to North Pacific Regime Shift in Korea Sea (북태평양체제전환 (North Pacific Regime Shifts)과 한반도 주변해역 동물플랑크톤 계절주기 변동 특성)

  • Kang, Young-Shil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.6
    • /
    • pp.493-504
    • /
    • 2008
  • In the seas around the Korean Peninsula, the seasonal cycle of zooplankton related to North Pacific regime shifts was investigated to understand the reaction of the ecosystem to climate change using long-term data on zooplankton biomass (1965-2000) and the abundance of four major zooplankton groups: copepods, amphipods, chaetognaths, and euphausiids (1978-2000). In general, the zooplankton biomass showed a large peak in spring and a small peak in autumnin Korean waters, but there was a slight difference in the peak time depending on the location and the period before and after the North Pacific regime shift. The zooplankton biomass showed conspicuous seasonal peaks in R-III (1990-2000) compared to R-I (1965-1976) and R-II (1977-1988), and the seasonal peak shifted from the autumn in R-II to the spring in R-III. The peak of copepods and euphausiids in abundance was from April to June, while chaetognaths peaked from August to October. We postulate that the time lag between the peaks for copepods and chaetognaths results from the predator-prey relationship. The regime shift in 1989 did not alter the seasonal cycle of the four major zooplankton groups, although it enhanced their production. The seasonal peaks of the four major zooplankton groups did not shift, while the seasonal peaks of the zooplankton biomass did shift. This was not only becausethe zooplankton biomass included other mesozooplankton groups but also because the abundance of the four major zooplankton groups increased significantly in spring.

Variation in Planktonic Assemblages in Asan Bay During the Winter-Spring Bloom (아산만 해역 동-춘계 대증식기의 플랑크톤 변화)

  • Park, Chul;Lee, Doo-Byoul;Lee, Chang-Rae;Yang, Sung-Ryull;Jung, Byoung-Gwan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.4
    • /
    • pp.308-319
    • /
    • 2008
  • Temporal variations in plankton assemblages and environmental factors in Asan Bay and their relationships were examined with the data collected from February till early June, 2005. Seawater temperatures showed typical pattern of temporal change observed in temperate waters. Salinity variation was minor. Phytoplankton biomass showed two peaks, one in February only in the inner part of the bay and the other in May in the whole bay. Phytoplankton succession was clearly shown with the increase of seawater temperatures. Diatom (Bacillariophyceae) dominated in February, diatom and cryptomonads (Cryptophyceae) prevailed in May, and dinoflagellates (Dinophyceae) was most abundant in June. Spring bloom in Asan Bay occurred about one month earlier than those observed in temperate seas. Among the inorganic nutrients (N, P and Si), only silicate concentration showed a significant negative correlation with phytoplankton biomass, indicating the sink of this nutrient in the bay to be the uptake by phytoplankton. Nitrate concentration seemed to be a limiting factor in this bay during the study period. Mesozooplankton abundances showed a significant positive correlation with seawater temperatures and a significant negative correlation with phytoplankton biomass. Increase of mesozooplankton abundance followed phytoplankton increase with the time lag of about two months. This increase of zooplankton seemed to be the result of increased seawater temperatures and food.