• 제목/요약/키워드: mesoscale process

검색결과 32건 처리시간 0.024초

봄철 영동 지역 국지 하강풍 메커니즘과 지형 효과에 대한 연구 (Study on Mechanisms and Orographic Effect for the Springtime Downslope Windstorm over the Yeongdong Region)

  • 김정훈;정일웅
    • 대기
    • /
    • 제16권2호
    • /
    • pp.67-83
    • /
    • 2006
  • The statistical analysis for the springtime windstorm in Korea shows that Yeongdong region has the highest occurrence frequency during recent 10 years. The objective of this study is to find possible mechanisms for the downslope windstorm formation in the Yeongdong region by using a mesoscale numerical model, WRF. Dynamical process, wave breaking (hereafter WB), is qualitatively investigated as the candidate mechanism for a windstorm event occurred in 5 April, 2005. WB is developed in upper troposphere downstream, since stable air is lifted by the Taebaek mountain. This process can cause and maintain the severe downslope windstorm by drawing the upper flow down to the surface. And the intensified downslope wind leads the hydraulic jump (hereafter HJ) in downstream region. Froude numbers at Chuncheon (upslope side), Seorak Mountain (crest), Yangyang (lee side), and the East Sea (distant downstream position) are estimated by about 0.4, 1.0, 1.6, and 0.6, respectively. This result implies that the accelerated and supercritical (Fr>1) flow adjusts to the ambient subcritical (Fr<1) conditions in the turbulent HJ. In addition, we find the formation of upstream inversion near top level of the mountain cause the intensification of HJ. Experiments to examine the orographic effect on the mechanisms suggest that the magnitudes of WB and HJ are larger in the experiment of higher topography, but there is no significant difference of windstorm magnitude among the experiments. Another important result from these sensitivity experiments is that the intensity of downslope windstorm strongly depends on the magnitude of upper (2~4 km) wind in upstream side.

기상모델을 이용한 지표면 반사능에 따른 냉방에너지 소비 저감 연구 (A Study on Reduction of Air Conditioning Energy Consumption by Surface Albedo Variation Using Meteorological Model)

  • 안재호
    • 한국태양에너지학회 논문집
    • /
    • 제30권3호
    • /
    • pp.16-24
    • /
    • 2010
  • Recently environmental regulations like the Kyoto Protocol, adopted in 1997, required the 5.2% reduction of the greenhouse gas emission in 1990. And 13th General Assembly in 2007, held in Bali of India, have agreed to duty reduction even in developing countries in 2013. Korean government needs the researches on climate change and the strategic programs for greenhouse gas reduction. In this paper Colorado State University Mesoscale Model(CSU-MM) was applied to simulate the relationship between surface albedo and air temperature. Meteorological model simulation in region of Ansan-City, Shiheung-City showed that mean air temperature became lower with the increase of albedo value. Simulated air temperature became lower $-0.16^{\circ}C$ and $-0.66^{\circ}C$ by 5% and 20% increase of albedo values respectively. And cooling energy saving amount in air conditioning process was calculated according to lowered air temperature. The reduction of air temperature resulted the reduction of air conditioning energy in personal house and commercial buildings. The increase of albedo from 5% to 20% resulted the reduction of air conditioning energy from 44,493 MWh/yr to 183,796 MWh/yr. Additionally the reduction of greenhouse gas emission through the energy saving was calculated after IPCC guideline. In terms of greenhouse gas emission $CO_2$ was reduced form -30,414 ton-$CO_2$/yr to -125,638 ton-$CO_2$/yr according to the reduction of electric energy.

중규모 수치모델 WRF를 이용한 강원 지방 하층 풍속 예측 평가 (Evaluation of Surface Wind Forecast over the Gangwon Province using the Mesoscale WRF Model)

  • 서범근;변재영;임윤진;최병철
    • 한국지구과학회지
    • /
    • 제36권2호
    • /
    • pp.158-170
    • /
    • 2015
  • 큰 에디 모의과정을 포함한 WRF 모델 (WRF-LES)을 이용하여 수치모델의 수평공간 규모에 따른 대기경계층 모수화 실험과 LES 모의 결과를 지표층 근처의 풍속 예측에 대하여 비교하였다. 수치실험은 복잡한 산악지형과 해안지역을 포함하는 강원도 지역에서 수평해상도 1 km와 333 m 실험을 수행하였다. 수평해상도 1 km 실험은 대기경계층 모수화 방안을 채택하였으며, 333 m 실험에서는 LES를 이용하였다. 복잡한 산악지역에서의 풍속 예측의 정확성은 수평해상도 1 km 실험 보다 333 m 실험에서 향상되었으며 해안지역에서는 1 km 실험에서 관측과 더 일치하였다. 지표층 근처의 큰 난류를 직접 계산하는 LES 실험은 산악지역의 풍속예측 개선에 기여하였다.

대기오염물질의 연직 수송에 미치는 전선의 역할 II: MM5를 이용한 3차원 연직 수송 실험 (The Role of Fronts on the Vertical Transport of Atmospheric Pollutants II: Vertical transport experiment using MM5)

  • 남재철;황승언;박순웅
    • 대기
    • /
    • 제14권4호
    • /
    • pp.3-18
    • /
    • 2004
  • Neglecting the vertical transport from the surface, most of the previous studies on the long-range transport of pollutants have only considered the horizontal transport caused by the free atmosphere wind. I used a three dimensional numerical model, MM5 (The fifth generation Penn State Univ./NCAR Mesoscale Model) for the simulation of vertical transport of pollutants and investigated the mechanism of the vertical transport of atmospheric pollutants between planetary boundary layer(PBL) and free atmosphere by fronts. From the three dimensional simulation of MM5, the amount of pollutants transport from PBL to free atmosphere is 48% within 18 hour after the development of front, 55% within 24 hour, and 53% within 30 hour. The ratios of the vertically transported pollutant for different seasons are 62%, 60%, 54%, and 43% for spring, summer, fall, and winter, respectively. The most active areas for the vertical transport are the center of low pressure and the warm sector located east side of cold front, in which the strong upward motion slanted northward occurs. The horizontal advection of pollutants at the upper level is stronger than at the lower level simply because of the stronger wind speed. The simulation results shows the well known plum shape distribution of pollutants. The high concentration area is located in the center and north of the low pressure system, while the second highest concentration area is in the warm sector. It is shown that the most important mechanism for the vertical transport is vertical advection, while the vertical diffusion process plays an important role in the redistribution of pollutants in the PBL.

Eddy Kinetic Energy in the East Sea Estimated from Topex/Poseidon Altimeter Measurements

  • Cho Kwangwoo;Cho Kyu-Dae
    • Fisheries and Aquatic Sciences
    • /
    • 제5권3호
    • /
    • pp.219-228
    • /
    • 2002
  • Based on the five-year (October 1992 through September 1997) Topex/Poseidon altimeter measurements, we describe the statistical characteristics of the eddy variability in the East Sea in terms of sea surface height anomaly, slope variability, and eddy kinetic energy (EKE). The sea surface height anomalies in the East Sea are produced with standard corrections from Topex/Poseidon measurements. In order to eliminate the high frequency noise in the sea surface height anomaly data, the alongtrack height anomaly data was filtered by about 40 km low-pass Lanczos filter based on Strub et al. (1997) and Kelly et a1. (1998). We find that there exists a distinct spatial contrast of high eddy variability in the south and low eddy energy in the north, bordering the Polar Front. In the northwestern area $(north\;of\;39^{\circ}N\;and\;west\;of\;133^{\circ}E)$ from the Polar Front where the eddies frequently appear, the EKE is also considerabel. The high kinetic energy in the southern East Sea reveals a close connection with the paths of the Tsushima Warm Current, suggesting that the high variability in the south is mainly generated by the baroclinic instability process of the Tsushima Warm Current. This finding is supported by other studies (Fu and Zlontnicki, 1989; Stammer, 1997) wh.ch have shown the strong eddy energy coupled in the major current system. The monthly variation of the EKE in both areas of high and low eddy variability shows a strong seasonality of a high eddy kinetic energy from October to February and a relatively low one from March to September. The sequential pattern of wind stress curl shows resemblance with those of monthly and seasonal EKE and the two sequences have a correlation of 0.82 and 0.67, respectively, providing an evidence that wind stress curl can be the possible forcing for the monthly and seasonal variation of the EKE in the East Sea. The seasonality of the EKE also seems to correlate with the seasonality of the Tsushima Warm Current. There also exists the large spatial and interannual variabilities in the EKE.

3차원 오일러리안 확산모델을 이용한 경인산단권역의 대기거동 해석 (Atmospheric Studies Using a Three-Dimensional Eulerian Model in Kyongin Region)

  • 송동웅
    • 한국환경과학회지
    • /
    • 제15권5호
    • /
    • pp.387-396
    • /
    • 2006
  • The numerical modeling and comparison with observations are performed to find out the detailed structure of meteorology and the characteristic of related dispersion phenomena of the non-reactive air pollutant at Kyoungin region, South Korea, where several industrial complex including Siwha, Banwol and Namdong is located. MM5 (Fifth Generation NCAR/Penn State Mesoscale Model), 3-D Land/sea breeze model and 3-D diagnostic meteorological model have been utilized for the meteorological simulation for September, 2002 with each different spatial resolution, while 3-D Eulerian air dispersion model for the air quality study. We can see the simulated wind field shows the very local circulation quitely well compared with in-site observations in shoreline area with complex terrains, at which the circulation of Land/sea breeze has developed and merged with the mountain and valley breeze eventually. Also it is shown in the result of the dispersion model that the diurnal variation and absolute value of daily mean $SO_2$ concentrations have good agreement with observations, even though the instant concentration of $SO_2$ simulated overestimates around 1.5 times rather than that of observation due to neglecting the deposition process and roughly estimated emission rate. This results may indicate that it is important for the air quality study at shoreline region with the complex terrain to implement the high resolution meteorological model which is able to handle with the complicate local circulation.

한반도 복잡 해안지역의 바람장 모의 개선 (Improvement in the Simulation of Wind Fields Over the Complex Coastal Area, Korea)

  • 김유근;배주현;정주희;권지혜;서장원;김용상
    • 한국환경과학회지
    • /
    • 제15권5호
    • /
    • pp.417-430
    • /
    • 2006
  • We focused on improvement in simulation of wind fields for the complex coastal area. Local Analysis and Prediction System(LAPS) was used as a data assimilation method to improve initial conditions. Case studies of different LAPS inputs were performed to compare improvement of wind fields. Five cases have been employed : I) non data assimilation, II) all available data, III) AWS, buoy, QuikSCAT, IV) AWS, buoy, wind profiler, V) AWS, buoy, AMEDAS. Data assimilation can supplement insufficiency of the mesoscale model which does not represent detailed terrain effect and small scale atmospheric flow fields. Result assimilated all available data showed a good agreement to the observations rather than other cases and estimated veil the local meteorological characteristics including sea breeze and up-slope winds. Result using wind profiler data was the next best thing. This implies that data assimilation with many high-resolution sounding data could contribute to the improvements of good initial condition in the complex coastal area. As a result, these indicated that effective data assimilation process and application of the selective LAPS inputs played an important role in simulating wind fields accurately in a complex area.

영동과 영서 호우의 특성 비교 (Comparison of the Properties of Yeongdong and Yeongseo Heavy Rain)

  • 권태영;김재식;김병곤
    • 대기
    • /
    • 제23권3호
    • /
    • pp.245-264
    • /
    • 2013
  • Heavy rain over the Gangwon region has distinct characteristics in the temporal and spatial distribution of rainfall, most of which are concentrated on a very short period of time and either part of Yeongdong and Yeongseo regions. According to its regional distribution, heavy rain events over the Gangwon region may be classified into Yeongdong and Yeongseo heavy rain in which rainfalls of more than 110 mm $(6 hrs)^{-1}$ (heavy rain warning) have been observed in at least one of the weather stations over only Yeongdong or Yeongseo region, but over the other region the rainfalls are less than 70 mm $(6 hrs)^{-1}$ (heavy rain advisory). To differentiate between Yeongdong and Yeongseo heavy rain, 9 cases for Yeongdong heavy rain and 8 cases for Yeongseo heavy rain are examined on their synoptic and mesoscale environments using some meteorological parameters and ingredients. In addition, 8 cases are examined in which heavy rain warning or advisory are issued in both Yeongdong and Yeongseo regions. The cases for each heavy rain type have shown largely similar features in some meteorological parameters and ingredients. Based on an ingredient analysis, there are three common and basic ingredients for the three heavy rain types: instability, moisture, and lift. However, it is found that the distinct and important process producing strong upward vertical motions may discriminate among three heavy rain types very well. Yeongdong heavy rain is characterized by strong orographic lifting, Yeongseo heavy rain by high instability (high CAPE), and heavy rain over both regions by strong synoptic-scale ascent (strong 850 hPa Q-Vector convergence, diagnostics for ascent). These ingredients and diagnostics for the ingredients can be used to forecasting the potential for regional heavy rain. And also by knowing which of ingredients is important for each heavy rain type, forecasters can concentrate on only a few ingredients from numerous diagnostic and prognostic products for forecasting heavy rain events.

Relationship between Low-level Clouds and Large-scale Environmental Conditions around the Globe

  • Sungsu Park;Chanwoo Song;Daeok Youn
    • 한국지구과학회지
    • /
    • 제43권6호
    • /
    • pp.712-736
    • /
    • 2022
  • To understand the characteristics of low-level clouds (CLs), environmental variables are composited on each CL using individual surface observations and six-hourly upper-air meteorologies around the globe. Individual CLs has its own distinct environmental conditions. Over the eastern subtropical and western North Pacific Ocean in JJA, stratocumulus (CL5) has a colder sea surface temperature (SST), stronger and lower inversion, and more low-level cloud amount (LCA) than the climatology whereas cumulus (CL12) has the opposite characteristics. Over the eastern subtropical Pacific, CL5 and CL12 are influenced by cold and warm advection within the PBL, respectively but have similar cold advection over the western North Pacific. This indicates that the fundamental physical process distinguishing CL5 and CL12 is not the horizontal temperature advection but the interaction with the underlying sea surface, i.e., the deepening-decoupling of PBL and the positive feedback between shortwave radiation and SST. Over the western North Pacific during JJA, sky-obscuring fog (CL11), no low-level cloud (CL0), and fair weather stratus (CL6) are associated with anomalous warm advection, surface-based inversion, mean upward flow, and moist mid-troposphere with the strongest anomalies for CL11 followed by CL0. Over the western North Pacific during DJF, bad weather stratus (CL7) occurs in the warm front of the extratropical cyclone with anomalous upward flow while cumulonimbus (CL39) occurs on the rear side of the cold front with anomalous downward flow. Over the tropical oceans, CL7 has strong positive (negative) anomalies of temperature in the upper troposphere (PBL), relative humidity, and surface wind speed in association with the mesoscale convective system while CL12 has the opposite anomalies and CL39 is in between.

우리 나라 우박 발생일의 특성 (Characterisitcs of Hail Occurred in the Korea Peninsular)

  • 임은하;정영선;남재철
    • 한국수자원학회논문집
    • /
    • 제33권2호
    • /
    • pp.229-235
    • /
    • 2000
  • 1989년부터 1998년 우리 나라에서 관측된 우박 발생일의 특성에 대해 분석하였다. 우박은 주로 서해안(약 70%), 남부 내륙 지방, 대관령 부근에서 관측된다. 평균 크기는 약 0.6 cm 이며 계절적 차이를 보인다. 겨울에는 봄 동안은 녹는 고도가 낮아 낙하 경로가 짧지만 대기 하층의 가용 습기도 적어 우박 크기가 작다. 그 결과 이 기간동안 작은 크기의 우박이 서해안에서 자주 관측된다. 반대로 여름철은 대기 하층의 가용 습기가 많아 우박이 크게 성장하기는 하지만 녹는 고도도 높아 지표에서는 우박이 아닌 강수로 관측되기 쉽다. 따라서 여름철에는 큰 우박 입자들이 대관령 등과 같은 높은 산악에서 주로 관측된다. 우박은 서해안에서는 1100 LST와 1500 LST 사이에 주로 관측되며, 대관령 부근에서는 1800 LST에 관측된다. 그 이유는 해륙풍과 산곡풍과 같은 중규모 순환이 우박을 동반하는 뇌우의 형성에 영향을 미치기 때문이다. 우박이 발생전의 종관 기상학적 특성을 살펴보기 위해 1998년 11월 우박 사례를 분석한 결과 850 hPa부터 500 hPa 까지의 기온이 모두 하강하였으며, 지상 기온과 이슬점 온도의 경도가 모두 큰 곳에서 우박이 발생하였다.

  • PDF