• Title/Summary/Keyword: mesoderm

Search Result 48, Processing Time 0.025 seconds

The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy

  • Kim, Eun Young;Lee, Kyung-Bon;Kim, Min Kyu
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.135-140
    • /
    • 2014
  • The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases.

Development of the Upper Lip -review- (상순의 발생 -review-)

  • Ko, Seung-O;Im, Yang-Hee;Kim, Ki-Byeung;Shin, Hyo-Keun
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • The vertebrate upper lip forms from initially freely projecting maxillary, medial nasal, and lateral nasal prominences at the rostral and lateral boundaries of the primitive oral cavity. These facial prominences arise during early embryogenesis from ventrally migrating neural crest cells in combination with the head ectoderm and mesoderm and undergo directed growth and expansion around the nasal pits to actively fuse with each other. Initial fusion is between lateral and medial nasal processes and is followed by fusion between maxillary and medial nasal processes. Fusion between these prominences involves active epithelial filopodial and adhering interactions as well as programmed cell death. Slight defects in growth and patterning of the facial mesenchyme or epithelial fusion result in cleft lip with or without cleft palate, the most common and disfiguring craniofacial birth defect. This review will summarize the current understanding of the basic morphogenetic processes and molecular mechanisms underlying upper lip development.

  • PDF

A Potential Role of fgf4, fgf24, and fgf17 in Pharyngeal Pouch Formation in Zebrafish

  • Sil Jin;Chong Pyo Choe
    • Development and Reproduction
    • /
    • v.28 no.2
    • /
    • pp.55-65
    • /
    • 2024
  • In vertebrates, Fgf signaling is essential for the development of pharyngeal pouches, which controls facial skeletal development. Genetically, fgf3 and fgf8 are required for pouch formation in mice and zebrafish. However, loss-of-function phenotypes of fgf3 and fgf8 are milder than expected in mice and zebrafish, which suggests that an additional fgf gene(s) would be involved in pouch formation. Here, we analyzed the expression, regulation, and function of three fgfs, fgf4, fgf24, and fgf17, during pouch development in zebrafish. We find that they are expressed in the distinct regions of pharyngeal endoderm in pouch formation, with fgf4 and fgf17 also being expressed in the adjacent mesoderm, in addition to previously reported endodermal fgf3 and mesodermal fgf8 expression. The endodermal expression of fgf4, fgf24, and fgf17 and the mesodermal expression of fgf4 and fgf17 are positively regulated by Tbx1 but not by Fgf3, in pouch formation. Fgf8 is required to express the endodermal expression of fgf4 and fgf24. Interestingly, however, single mutant, all double mutant combinations, and triple mutant for fgf4, fgf24, and fgf17 do not show any defects in pouches and facial skeletons. Considering a high degree of genetic redundancy in the Fgf signaling components in craniofacial development in zebrafish, our result suggests that fgf4, fgf24, and fgf17 have a potential role for pouch formation, with a redundancy with other fgf gene(s).

carotid Body Paragangrioma -Two cases report- (경동맥체 부신경절종 -수술치험 2례-)

  • 박영훈;김욱진
    • Journal of Chest Surgery
    • /
    • v.29 no.9
    • /
    • pp.1023-1027
    • /
    • 1996
  • The carotid body is derived from both mesoderm and elements of the third branchial arch and neural crest ectoderm. It is located within the advaptitial layer of the posteromedial aspe t of the common carotid bifurcation. Tumors arising from this body were originally termed chemodectomas, but they actually arise from the paraganglionic cells and thereby should be classified as paragangliomas. Carotid body. tumors present as a painless, palpable mass over the carotid bifurcation region of the neck. The definitive study for diagnosis of carotid body tumors is selective bilateral cerebral arteriography. Current treatment of ca- rotid body tumors is primarily operative excision of the tumor with maintenance of the Integrity of carotid flow. Recently, the authors experienced two cases of carotid body tumor which were successfully treated by surgical excision. We report these cases with brief review of the literature.

  • PDF

Mesodermal Formation and Patterning during Ascidian Embryogenesis (멍게 배발생 과정에서 중배엽 형성과 패턴화)

  • 김길중;니시다히로키
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.77-82
    • /
    • 2002
  • In ascidians, a primitive chordate, maternal cytoplasmic factors and inductive interactions are involved in the specification of cell fates in early embryos. The larval structure of ascidians is relatively simple, and the major mesodermal tissues of the tadpole larva are notochord, muscle, and mesenchyme. Formation of muscle cells is a cell-autonomous process, and localized maternal macho-l mRNA specify muscle fate in the posterior marginal zone of the early embryo. In contrast, inductive influence from endoderm precursors plays important roles in the specification of notochord and mesenchyme fates. FGF-Ras-MAPK signaling is involved In the induction of both tissues. The difference in responsiveness of the posterior mesenchyme and anterior notochord precursors to FGF signaling is caused by the presence or absence of intrinsic factors that inherited from the posterior-vegetal egg cytoplasm, respectively. In these inductions, directed signal polarizes the induced cells and promotes asymmetric cell divisions to produce two daughter cells with distinct fates.

  • PDF

Long-term Cryopreservation of Mesenchymal Stem Cells Derived from Human Eyelid Adipose and Amniotic Membrane: Maintenance of Stem Cell Characteristics

  • Song, Yeon-Hwa;Park, Se-Ah;Yun, Su-Jin;Yang, Hye-Jin;Yoon, A-Young;Kim, Haek-Won
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.339-347
    • /
    • 2011
  • Human eyelid adipose-derived stem cells (hEAs) and amniotic mesenchymal stem cells (hAMs) are very valuable sources for the cell therapeutics. Both types of cells have a great proliferating ability in vitro and a multipotency to differentiate into adipocytes, osteoblasts and chondrocytes. In the present study, we evaluated their stem cell characteristics after long-time cryopreservation for 6, 12 and 24 months. When frozen-thawed cells were cultivated in vitro, their cumulative cell number and doubling time were similar to freshly prepared cells. Also they expressed stem cell-related genes of SCF, NANOG, OCT4, and TERT, ectoderm-related genes of NCAM and FGF5, mesoderm/endoderm-related genes of CK18 and VIM, and immune-related genes of HLA-ABC and ${\beta}$2M. Following differentiation culture in appropriate culture media for 2-3 weeks, both types of cells exhibited well differentiation into adipocyte, osteoblast, and chondrocyte, as revealed by adipogenic, osteogenic or chondrogenic-specific staining and related genes, respectively. In conclusion, even after long-term storage hEAs and hAMs could maintain their stem cell characteristics, suggesting that they might be suitable for clinical application based on stem cell therapy.

Effective Application of Multiplex RT-PCR for Characterization of Human Embryonic Stem Cells/ Induced Pluripotent Stem Cells (다중 역전사 중합효소 연쇄 반응(Multiplex RT-PCR)을 이용한 인간배아 줄기세포 및 유도만능 줄기세포의 효과적인 분화 양상 조사)

  • Kim, Jung-Mo;Cho, Youn-Jeong;Son, On-Ju;Hong, Ki-Sung;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Techniques to evaluate gene expression profiling, such as sufficiently sensitive cDNA microarrays or real-time quantitative PCR, are efficient methods for monitoring human pluripotent stem cell (hESC/iPSC) cultures. However, most of these high-throughput tests have a limited use due to high cost, extended turn-around time, and the involvement of highly specialized technical expertise. Hence, there is an urgency of rapid, cost-effective, robust, yet sensitive method development for routine screening of hESCs/hiPSCs. A critical requirement in hESC/hiPSC cultures is to maintain a uniform undifferentiated state and to determine their differentiation capacity by showing the expression of gene markers representing all three germ layers, including ectoderm, mesoderm, and endoderm. To quantify the modulation of gene expression in hESCs/hiPSC during their propagation, expansion, and differentiation via embryoid body (EB) formation, we developed a simple, rapid, inexpensive, and definitive multimarker, semiquantitative multiplex RT-PCR platform technology. Among the 9 gene primers tested, 5 were pluripotent markers comprising set 1, and 3 lineage-specific markers were combined as set 2, respectively. We found that these 2 sets were not only effective in determining the relative differentiation in hESCs/hiPSCs, but were easily reproducible. In this study, we used the hES/hiPS cell lines to standardize the technique. This multiplex RT-PCR assay is flexible and, by selecting appropriate reporter genes, can be designed for characterization of different hESC/hiPSC lines during routine maintenance and directed differentiation.

THE ROLE OF BONE MORPHOGENETIC PROTEIN IN THE TOOTH CULTURE (치아 기관배양시 골형성단백의 역할에 관한 연구)

  • Chung, Il-Hyuk;Chung, Jong-Hoon;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.5
    • /
    • pp.438-443
    • /
    • 2004
  • Objectives : The proper development of the facial structures relies upon a sequence of tightly regulated signaling interactions between the ectoderm and mesoderm involving the participation of several families of signaling molecules. Among these, bone morphogenetic proteins (BMPs) have been suggested to be a key signal that regulates the development of the mandible and the initiation and morphogenesis of the teeth. The aim of this study was to examine the artificial development of the mandibular structures and to examine the role of BMPs on tooth morphogenesis and differentiation using an organ culture system. Materials and Methods : The tooth germs from Ed 11.5, 13.5 mice were dissected, and transplanted into the diastema of the mandible primordia. The mandibles containing the transplanted tooth germs were cultured in vitro. During this period, beads soaked with BMP4 were implanted around the transplanted tooth germs. In addition, a diastema block containing the transplanted tooth germ was dissected, then transferred to an adult mouse kidney. After the organ culture, the developing mandibular explant was removed from the kidney and prepared for the tissue specimens. Odontogeneis of the transplanted tooth germs was examined after Hematoxylin-eosin, Masson-trichrome staining. Results : Proliferation and differentiation of the tooth germs cultured in the diastema was observed. In the BMP4-treated tooth germs, the formation of the first and second molars was noted. The crown of the developing tooth showed the formation of a mature cusp with the deposition of enamel and dentin matrix. In conclusion, it was confirmed that BMP4 is involved in the formation of a dental crown and the differentiation of ameloblasts and odontoblasts of the molar tooth during the development of the transplanted tooth germs.

A Case of Dermoid Cyst in Temporal Fossa (측두와에 발생한 피부모양기형낭종)

  • Lee, Hak Sung;Choi, Matthew Seung Suk;Ahn, Hee Chang;Lee, Jang Hyun
    • Archives of Craniofacial Surgery
    • /
    • v.11 no.1
    • /
    • pp.65-68
    • /
    • 2010
  • Purpose: Dermoid cysts are benign neoplasms that are derived from both ectoderm and mesoderm. Approximately 7 percent of all dermoid cysts occur in the head and neck, as most common sites are the lateral ends of the eyebrows, the midline in the nasal root and neck. Rarely they can be found in the frontal sinus, temporal bone, maxilla and the floor of the mouth. Dermoid cysts in the temporal fossa are extremely rare. We experienced a characteristic dermoid cyst that occupied the temporal fossa. Methods: A 16-year-old man had a progressive enlarging mass on the left eyebrow. Computerized tomographic scan showed a bulging mass in the temporal fossa, and it had the density similar to that of fat. The size of the mass was $3{\times}3{\times}2cm$, and it was composed of high density of fat with clear margin. There was no bony invasion, but the mass was fixed on bone. Results: We performed the surgery through coronal incision under general anesthesia. Because the mass was closely connected with temporal fat pads, we removed this mass with some portion of temporal fat pads, avoiding damage to the facial nerve. The postoperative course was ordinary without complication. Conclusion: The reports about dermoid cyst on the temporal fossa is uncommon. However, if there is a mass in the temporal fossa which has the density similar to that of fat in CT scan, we should consider the possibility of dermoid cyst. We suggest that excision through coronal incision with bewaring temporal fat pad can induce good result.

Differentiation of Human Adult Adipose Derived Stem Cell in vitro and Immunohistochemical Study of Adipose Derived Stem Cell after Intracerebral Transplantation in Rats

  • Ko, Kwang-Seok;Lee, Il-Woo;Joo, Won-Il;Lee, Kyung-Jun;Park, Hae-Kwan;Rha, Hyung-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.2
    • /
    • pp.118-124
    • /
    • 2007
  • Objective : Adipose tissue is derived from the embryonic mesoderm and contains a heterogenous stromal cell population. Authors have tried to verify the characteristics of stem cell of adipose derived stromal cells (ADSCs) and to investigate immunohistochemical findings after transplantation of ADSC into rat brain to evaluate survival, migration and differentiation of transplanted stromal cells. Methods : First ADSCs were isolated from human adipose tissue and induced adipose, osseous and neuronal differentiation under appropriate culture condition in vitro and examined phenotypes profile of human ADSCs in undifferentiated states using flow cytometry and immunohistochemical study. Human ADSCs were transplanted into the healthy rat brain to investigate survival, migration and differentiation after 4 weeks. Results : From human adipose tissue, adipose stem cells were harvested and subcultured for several times. The cultured ADSCs were differentiated into adipocytes, osteoctye and neuron-like cell under conditioned media. Flow cytometric analysis of undifferentiated ADSCs revealed that ADSCs were positive for CD29, CD44 and negative for CD34, CD45, CD117 and HLA-DR. Transplanted human ADSCs were found mainly in cortex adjacent to injection site and migrated from injection site at a distance of at least 1 mm along the cortex and corpus callosum. A few transplanted cells have differentiated into neuron and astrocyte. Conclusion : ADSCs were differentiated into multilineage cell lines through transdifferentiation. ADSCs were survived and migrated in xenograft without immunosuppression. Based on this data, ADSCs may be potential source of stem cells for many human disease including neurologic disorder.