• Title/Summary/Keyword: mesh convergence

Search Result 271, Processing Time 0.027 seconds

A Study for pointwise by a 1-irregular mesh (1-irregular mesh를 이용한 편미분 방정식의 수렴성에 관한 연구)

  • Lee Hyeong;Jin Gi Beom
    • The Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.121-132
    • /
    • 1992
  • The pointwise convergence define the relation-ship between the mesh-size and the tolerance. This will play an important role in improving quality of finite element approximate solution. In this paper, We evaluate the convergence on a certaon unknown point with a 1-irregular mesh refinement. This m that the degree of freedom is minimized within a tolerance.

  • PDF

Male-Silkmoth-Inspired Routing Algorithm for Large-Scale Wireless Mesh Networks

  • Nugroho, Dwi Agung;Prasetiadi, Agi;Kim, Dong-Seong
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.384-393
    • /
    • 2015
  • This paper proposes an insect behavior-inspired routing algorithm for large-scale wireless mesh networks. The proposed algorithm is adapted from the behavior of an insect called Bombyx mori, a male silkmoth. Its unique behavior is its flying technique to find the source of pheromones. The algorithm consists of two steps: the shortest-path algorithm and the zigzag-path algorithm. First, the shortest-path algorithm is employed to transmit data. After half of the total hops, the zigzag-path algorithm, which is based on the movement of the male B. mori, is applied. In order to adapt the biological behavior to large-scale wireless mesh networks, we use a mesh topology for implementing the algorithm. Simulation results show that the total energy used and the decision time for routing of the proposed algorithm are improved under certain conditions.

Pointwise Convergence for the FEM in Poisson Equations by a 1-Irregular Mesh (포아송 방정식에서 1-Irregular Mesh를 이용한 유한요소법의 수렴성에 관한 연구)

  • Lee, Hyoung;Ra, Sang-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1194-1200
    • /
    • 1991
  • The FEM is a computer-aided mathematical technique for obtaining approximate solution to the differential equations. The pointwise convergence defines the relationship between the mesh size and the tolerance. This will play an important role in improving quality of finite element approximate solution. In the paper. We evaluate the convergence on a certain unknown point with a 1-irregular mesh refinement and spectral order enrichment. This means that the degree of freedom is minimized within a tolerance.

  • PDF

Motion Estimation using Hierarchical Triangular Mesh and Fast Node Convergence (계층적 삼각형 메쉬를 이용한 움직임 추정과 노드의 수렴 고속화)

  • 이동규;이두수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.88-94
    • /
    • 2003
  • In this paper, we propose a hierarchical triangular mesh generation method based on the motion information and a fast rude convergence method. From the variance of Image difference we decide the region that subdivision is required and perform the adequate triangulation method that is possible to yield a successive hierarchical triangulation. For fast node convergence, in initial search, we use the refinement method that separate the backgroung and object region and maintain the mesh connection by using the bilinear interpolation. The simulation result demonstrate that proposed triangulation method have performance in PSNR than the conventional BMA or order mesh based method and refinement is appropriate for the case of the mesh size is small.

Improved Conversion Efficiency of Dye-sensitized Solar Cells Based on TiO2 Porous Layer Coated TiO2 Nanotubes on a Titanium Mesh Substrate as Photoanode

  • Lim, Jae-Min;He, Weizhen;Kim, Hyung-Kook;Hwang, Yoon-Hwae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.90-96
    • /
    • 2013
  • We report here flexible dye-sensitized solar cells (DSSC) based on Ti-mesh electrodes that show good mechanical flexibility and electrical conductivity. $TiO_2$ nanotube arrays prepared by electrochemical anodizing Ti-mesh substrate were used as photoanode. A Pt-coated Ti-mesh substrate was used as counter electrode. The photoanodes were modified by coating a $TiO_2$ porous layer onto the $TiO_2$ nanotubes in order to increase the specific surface area. To increase the long term stability of the DSSCs, a gel type electrolyte was used instead of a conventional liquid type electrolyte. The DSSC based on $33.2{\mu}m$ long porous $TiO_2$ nanotubes exhibited a better energy conversion efficiency of ~2.33%, which was higher than that of the DSSCs based on non-porous $TiO_2$ nanotubes.

A Study on Spatial Distributions of Courant Number and Numerical Efficiency of LTS Method in Calculation of Ship Resistance Using Structured and Unstructured Meshes (정렬 및 비정렬 격자를 이용한 선박 저항 계산에서 Courant 수의 공간 분포 및 LTS 기법의 효율성에 관한 연구)

  • Lee, Sang Bong;Paik, Kwang-Jun;Park, Dong Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.83-89
    • /
    • 2017
  • Numerical simulations of ship resistance have been performed to compare spatial characteristics of Courant number when using structured and unstructured meshes. When Euler scheme was used for time integration, the structured mesh provided a more efficient calculation because the calculation time interval was larger than that of unstructured mesh. The automatic generation of very small meshes in the unstructured mesh was mainly responsible for the limitation of calculation time interval. When local time stepping Euler scheme was applied, however, the ship resistance of unstructured mesh showed a rapid convergence while a slow convergence of ship resistance in structured mesh was caused by the small time interval in bulbous bow.

Topology Design Optimization for Improving Fail-over Performance in Wired Mesh Network (유선 메시 구조에서의 절체 성능 향상을 위한 네트워크 설계 기법)

  • Hwang, Jongsu;Jang, Eunjeong;Lee, Wonoh;Kim, Jonghyeok;Kim, Heearn
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.165-175
    • /
    • 2019
  • Networks use relatively slow heartbeat mechanisms, usually in routing protocols, to detect failures when there is no hardware signaling to help out. The time to detect failures available in the existing protocols is no better than a second, which is far too long for some applications and represents a great deal of lost data at 10 Gigabit rates. We compare the convergence time of routing protocol applying Bidirectional Forwarding Detection (BFD) protocol in wired mesh network topology. This paper suggests the combinations of protocols improving fail-over performance. Through the performance analysis, we contribute to reduce convergence time when system is fail-over.

Convergence studies for Enriched Free Mesh Method and its application to fracture mechanics

  • Matsubara, Hitoshi;Yagawa, Genki
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.277-293
    • /
    • 2009
  • The Enriched Free Mesh Method (EFMM) is a patch-wise procedure in which both a displacement field on an element and a stress/strain field on a cluster of elements connected to a node can be defined. On the other hand, the Superconvergent Patch Recovery (SPR) is known to be an efficient post-processing procedure of the finite element method to estimate the error norm at a node. In this paper, we discuss the relationship between solutions of the EFMM and those of the SPR through several convergence studies. In addition, in order to solve the demerit of the smoothing effect on the fracture mechanics fields, we implement a singular stress field to a local patch in the EFMM, and its effectiveness is investigated.

Generation of 3D Terrain Mesh Using Noise Function and Height Map (노이즈 함수 및 높이맵을 이용한 3차원 지형 메쉬의 생성)

  • Sangkun, Park
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • This paper describes an algorithm for generating a terrain using a noise function and a height map as one of the procedural terrain generation methods. The polygon mesh data structure to represent the generated terrain concisely and render it is also described. The Perlin noise function is used as the noise technique for terrain mesh, and the height data of the terrain is generated by combining the four noise waves. In addition, the terrain height information can be also obtained from actual image data taken from the satellite. The algorithm presented in this paper generates the geometry part of the polygon topography from the height data obtained, and generated a material for texture mapping with two textures, that is, a diffuse texture and a normal texture. The validity of the terrain method proposed in this paper is verified through application examples, and its possibility can be confirmed through performance verification.

Mesh size refining for a simulation of flow around a generic train model

  • Ishak, Izuan Amin;Alia, Mohamed Sukri Mat;Salim, Sheikh Ahmad Zaki Shaikh
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.223-247
    • /
    • 2017
  • By using numerical simulation, vast and detailed information and observation of the physics of flow over a train model can be obtained. However, the accuracy of the numerical results is questionable as it is affected by grid convergence error. This paper describes a systematic method of computational grid refinement for the Unsteady Reynolds Navier-Stokes (URANS) of flow around a generic model of trains using the OpenFOAM software. The sensitivity of the computed flow field on different mesh resolutions is investigated in this paper. This involves solutions on three different grid refinements, namely fine, medium, and coarse grids to investigate the effect of grid dependency. The level of grid independence is evaluated using a form of Richardson extrapolation and Grid Convergence Index (GCI). This is done by comparing the GCI results of various parameters between different levels of mesh resolutions. In this study, monotonic convergence criteria were achieved, indicating that the grid convergence error was progressively reduced. The fine grid resolution's GCI value was less than 1%. The results from a simulation of the finest grid resolution, which includes pressure coefficient, drag coefficient and flow visualization, are presented and compared to previous available data.