• 제목/요약/키워드: mesenchymal

검색결과 1,159건 처리시간 0.02초

Enhanced Chondrogenesis by Three-dimensional Co-culture of Chondrocytes and Mesenchymal Stem Cells (연골세포와 중간엽줄기세포의 3차원 Co-culture를 통한 연골화 향상)

  • Hwang, Seul-Gee;Cha, Hyun-Myoung;Lim, Jin-Hyuk;Lee, Ji-Hee;Shim, Hye-Eun;Kim, Dong-Il
    • KSBB Journal
    • /
    • 제31권2호
    • /
    • pp.120-125
    • /
    • 2016
  • Two-dimensional cultivation is typically used for cell growth, but the method reduces the characteristics of chondrocytes and stem cells, and limits culture area. Therefore, development of three-dimensional culture method is needed to mimic in vivo environment, improve quality of cells and scale-up efficiently. Improving proliferation and chondrogenesis is available by co-culture of chondrocytes and mesenchymal stem cells (MSCs) that leads to interaction between two kinds of cells. However, the co-culture has problems that permeability of sphere diminishes as aggregate size increased and ratio of two kinds of cells composing each spheres is different. In this work, co-cultivation method using controlled sphere composed of chondrocytes and MSCs was established and enhanced chondrogenesis. Periosteum-derived progenitor cells (PDPCs) that are appropriate for cell therapy source of articular cartilage were used as MSCs. Controlled spheres were formed in the hanging-drop plates and shifted for being induced chondrogenesis in 35-mm non-adhesive culture dishes at a rotation rate of 60 rpm. After inducing chondrogenesis, gene expressions related with chondrogenesis were found to be improved and it was apparent that the utilization of controlled spheres promoted chondrogenesis. As a result, available numbers of cells per unit area were increased and chondrogenic differentiation ability was improved compared to typical two-dimensional culture. This approach shows the potential in cartilage regeneration as it can provide sufficient numbers of chondrocytes.

Allogeneic clonal mesenchymal stem cell therapy for refractory graft-versus-host disease to standard treatment: a phase I study

  • Yi, Hyeon Gyu;Yahng, Seung-Ah;Kim, Inho;Lee, Je-Hwan;Min, Chang-Ki;Kim, Jun Hyung;Kim, Chul Soo;Song, Sun U.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.63-67
    • /
    • 2016
  • Severe graft-versus-host disease (GVHD) is an often lethal complication of allogeneic hematopoietic stem cell transplantation (HSCT). The safety of clinical-grade mesenchymal stem cells (MSCs) has been validated, but mixed results have been obtained due to heterogeneity of the MSCs. In this phase I study, the safety of bone marrow-derived homogeneous clonal MSCs (cMSCs) isolated by a new subfractionation culturing method was evaluated. cMSCs were produced in a GMP facility and intravenously administered to patients who had refractory GVHD to standard treatment resulting after allogeneic HSCT for hematologic malignancies. After administration of a single dose ($1{\times}10^6cells/kg$), 11 patients were evaluated for cMSC treatment safety and efficacy. During the trial, nine patients had 85 total adverse events and the rate of serious adverse events was 27.3% (3/11 patients). The only one adverse drug reaction related to cMSC administration was grade 2 myalgia in one patient. Treatment response was observed in four patients: one with acute GVHD (partial response) and three with chronic GVHD. The other chronic patients maintained stable disease during the observation period. This study demonstrates single cMSC infusion to have an acceptable safety profile and promising efficacy, suggesting that we can proceed with the next stage of the clinical trial.

Sphingosylphosphorylcholine Induces Thrombospondin-1 Secretion in MCF10A Cells via ERK2

  • Kang, June Hee;Kim, Hyun Ji;Park, Mi Kyung;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제25권6호
    • /
    • pp.625-633
    • /
    • 2017
  • Sphingosylphosphorylcholine (SPC) is one of the bioactive phospholipids that has many cellular functions such as cell migration, adhesion, proliferation, angiogenesis, and $Ca^{2+}$ signaling. Recent studies have reported that SPC induces invasion of breast cancer cells via matrix metalloproteinase-3 (MMP-3) secretion leading to WNT activation. Thrombospondin-1 (TSP-1) is a matricellular and calcium-binding protein that binds to a wide variety of integrin and non-integrin cell surface receptors. It regulates cell proliferation, migration, and apoptosis in inflammation, angiogenesis and neoplasia. TSP-1 promotes aggressive phenotype via epithelial mesenchymal transition (EMT). The relationship between SPC and TSP-1 is unclear. We found SPC induced EMT leading to mesenchymal morphology, decrease of E-cadherin expression and increases of N-cadherin and vimentin. SPC induced secretion of thrombospondin-1 (TSP-1) during SPC-induced EMT of various breast cancer cells. Gene silencing of TSP-1 suppressed SPC-induced EMT as well as migration and invasion of MCF10A cells. An extracellular signal-regulated kinase inhibitor, PD98059, significantly suppressed the secretion of TSP-1, expressions of N-cadherin and vimentin, and decrease of E-cadherin in MCF10A cells. ERK2 siRNA suppressed TSP-1 secretion and EMT. From online PROGgene V2, relapse free survival is low in patients having high TSP-1 expressed breast cancer. Taken together, we found that SPC induced EMT and TSP-1 secretion via ERK2 signaling pathway. These results suggests that SPC-induced TSP-1 might be a new target for suppression of metastasis of breast cancer cells.

Activation of Caspase-3 and -7 on Porcine Bone Marrow Derived Mesenchymal Stem Cells (pBM-MSCs) Cryopreserved with Dimethyl Sulfoxide (DMSO) (동결 보호제(DMSO) 농도에 따른 돼지 중간엽 줄기세포의 Caspase 3과 7 발현)

  • Ock, Sun-A;Rho, Gyu-Jin
    • Journal of Embryo Transfer
    • /
    • 제27권3호
    • /
    • pp.183-187
    • /
    • 2012
  • Adult stem cell transplantation has been increased every year, because of the lack of organ donors for regenerative medicine. Therefore, development of reliable and safety cryopreservation and bio-baking method for stem cell therapy is urgently needed. The present study investigated safety of dimethyl sulfoxide (DMSO) such as common cryoprotectant on porcine bone marrow derived mesenchymal stem cells (pBM-MSCs) by evaluating the activation of Caspase-3 and -7, apoptosis related important signal pathway. pBM-MSCs used for the present study were isolated density gradient method by Ficoll-Paque Plus and cultured in A-DMEM supplemented 10% FBS at $38.5^{\circ}C$ in 5% $CO_2$ incubator. pBM-MSCs were cryopreserved in A-DMEM supplemented either with 5%, 10% or 20% DMSO by cooling rate at $-1^{\circ}C$/min in a Kryo 360 (planner 300, Middlesex, UK) and kept into $LN_2$. Survival rate of cells after thawing did not differ between 5% and 10% DMSO but was lowest in 20% DMSO by 0.4% trypan blue exclusion. Activation of Caspase-3 and -7 by Vybrant FAM Caspase-3 and -7 Assay Assay Kit (Molecular probes, Inc.OR, USA) was analyzed with a flow cytometer. Both of cryopreserved and control groups (fresh pBM-MSCs) were observed after the activation of Caspase-3 and -7. The activation did not differ between 5% and 10% DMSO, but was observed highest in 20% DMSO. Therefore 5% DMSO can be possibly used for cell cryopreservation instead of 10% DMSO.

Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner

  • Yun, SeungPil;Yun, Chul Won;Lee, Jun Hee;Kim, SangMin;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제26권5호
    • /
    • pp.464-473
    • /
    • 2018
  • Cripto is a small glycosylphosphatidylinositol-anchored signaling protein that can detach from the anchored membrane and stimulate proliferation, migration, differentiation, vascularization, and angiogenesis. In the present study, we demonstrated that Cripto positively affected proliferation and survival of mesenchymal stem cells (MSCs) without affecting multipotency. Cripto also increased expression of phosphorylated janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), 78 kDa glucose-regulated protein (GRP78), c-Myc, and cyclin D1. Notably, treatment with an anti-GRP78 antibody blocked these effects. In addition, pretreatment with STAT3 short interfering RNA (siRNA) inhibited the increase in p-JAK2, c-Myc, cyclin D1, and BCL3 levels caused by Cripto and attenuated the pro-survival action of Cripto on MSCs. We also found that incubation with Cripto protected MSCs from apoptosis caused by hypoxia or $H_2O_2$ exposure, and the level of caspase-3 decreased by the Cripto-induced expression of B-cell lymphoma 3-encoded protein (BCL3). These effects were sensitive to down-regulation of BCL3 expression by BCL3 siRNA. Finally, we showed that Cripto enhanced expression levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). In summary, our results demonstrated that Cripto activated a novel biochemical cascade that potentiated MSC proliferation and survival. This cascade relied on phosphorylation of JAK2 and STAT3 and was regulated by GRP78. Our findings may facilitate clinical applications of MSCs, as these cells may benefit from positive effects of Cripto on their survival and biological properties.

Two-Cell Spheroid Angiogenesis Assay System Using Both Endothelial Colony Forming Cells and Mesenchymal Stem Cells

  • Shah, Sajita;Kang, Kyu-Tae
    • Biomolecules & Therapeutics
    • /
    • 제26권5호
    • /
    • pp.474-480
    • /
    • 2018
  • Most angiogenesis assays are performed using endothelial cells. However, blood vessels are composed of two cell types: endothelial cells and pericytes. Thus, co-culture of two vascular cells should be employed to evaluate angiogenic properties. Here, we developed an in vitro 3-dimensional angiogenesis assay system using spheroids formed by two human vascular precursors: endothelial colony forming cells (ECFCs) and mesenchymal stem cells (MSCs). ECFCs, MSCs, or ECFCs+MSCs were cultured to form spheroids. Sprout formation from each spheroid was observed for 24 h by real-time cell recorder. Sprout number and length were higher in ECFC+MSC spheroids than ECFC-only spheroids. No sprouts were observed in MSC-only spheroids. Sprout formation by ECFC spheroids was increased by treatment with vascular endothelial growth factor (VEGF) or combination of VEGF and fibroblast growth factor-2 (FGF-2). Interestingly, there was no further increase in sprout formation by ECFC+MSC spheroids in response to VEGF or VEGF+FGF-2, suggesting that MSCs stimulate sprout formation by ECFCs. Immuno-fluorescent labeling technique revealed that MSCs surrounded ECFC-mediated sprout structures. We tested vatalanib, VEGF inhibitor, using ECFC and ECFC+MSC spheroids. Vatalanib significantly inhibited sprout formation in both spheroids. Of note, the $IC_{50}$ of vatalanib in ECFC+MSC spheroids at 24 h was $4.0{\pm}0.40{\mu}M$, which are more correlated with the data of previous animal studies when compared with ECFC spheroids ($0.2{\pm}0.03{\mu}M$). These results suggest that ECFC+MSC spheroids generate physiologically relevant sprout structures composed of two types of vascular cells, and will be an effective pre-clinical in vitro assay model to evaluate pro- or anti-angiogenic property.

Characterization of multipotent mesenchymal stem cells isolated from adipose tissue and bone marrow in pigs (돼지 지방 조직 및 골수 유래 성체줄기세포의 성상분석과 다능성에 관한 연구)

  • Lee, Ah-Young;Choe, Gyeong-Im;Nah, Jin-Ju;So, ByungJae;Lee, Kyung-Woo;Chang, Ki-Yoon;Song, Jae-Young;Cha, Sang-Ho
    • Korean Journal of Veterinary Research
    • /
    • 제53권1호
    • /
    • pp.37-42
    • /
    • 2013
  • Mesenchymal stem cells (MSCs) have ability to differentiate into multi-lineage cells, which confer a great promise for regenerative medicine to the cells. The aim of this study was to establish a method for isolation and characterization of adipose tissue-derived MSC (pAD-MSC) and bone marrow-derived MSC (pBM-MSC) in pigs. Isolated cells from all tissues were positive for CD29, CD44, CD90 and CD105, but negative for hematopoietic stem cell associated markers, CD45. In addition, the cells expressed the transcription factors, such as Oct4, Sox2, and Nanog by RT-PCR. pAD-MSC and pBM-MSC at early passage successfully differentiated into chondrocytes, osteocytes and adipocytes. Collectively, pig AD-MSC and BM-MSC with multipotency were optimized in our study.

Flow cytometric immunophenotyping of canine adipose-derived mesenchymal stem cells (ADMSCs) and feline ADMSCs using anti-human antibodies

  • Ko, Minho;Lee, Kwon Young;Kim, Sae Hoon;Kim, Manho;Choi, Jung Hoon;Im, Wooseok;Chung, Jin Young
    • Korean Journal of Veterinary Research
    • /
    • 제58권1호
    • /
    • pp.33-37
    • /
    • 2018
  • Various trials have been conducted to develop therapies for serious untreatable diseases. Among these, those using stem cells have shown great promise, and adipose-derived mesenchymal stem cells (ADMSCs) are easier to obtain than other types of stem cells. Prior to clinical trials, characterization of ADMSCs with monoclonal antibodies should be performed. However, it is difficult to use species-specific antibodies for veterinarians. This study was conducted to confirm the panel of human antibodies applicable for use in immunophenotypic characterization of canine adipose-derived stem cells and feline ADMSCs extracted from subcutaneous adipose tissue collected during ovariohysterectomy. For flow cytometric immunophenotyping, the third passages of canine ADMSC and feline ADMSC and human CD31, CD34, CD42, CD44, CD62 and CD133 antibodies were used. Of these, CD133 reacted with canine cells (3.74%) and feline cells (1.34%). CD133 is known as a marker related with more primitive stem cell phenotype than other CD series. Because this human CD133 was not a species-specific antibody, accurate percentages of immunoreactivity were not confirmed. Nevertheless, the results of this study confirmed human CD133 as a meaningful marker in canine and feline ADMSCs.

Influence of Mesenchymal Stem Cells on Cryopreserved Tracheal Allografts in Rabbits

  • Kim, Hyunjo
    • Journal of Chest Surgery
    • /
    • 제46권5호
    • /
    • pp.328-339
    • /
    • 2013
  • Background: Ischemic injury and the rejection process are the main reasons for graft failure in tracheal transplantation models. To enhance the acceptance, we investigated the influence of mesenchymal stem cells (MSCs) on tracheal allografts. Methods: Extracted tracheal grafts from New Zealand white rabbits were cryopreserved for 4 weeks and orthotopically transplanted (control group A, n=8). In group B (n=8), cyclosporin A (CsA, 10 mg/kg) was injected daily into the peritoneal cavity. In group C (n=8), MSCs ($1.0{\times}10^7$ cells/kg) from the same donor of the tracheal allograft, which had been pre-cultured for 4 weeks, were infused intravenously after transplantation. In group D (n=8), MSCs were infused and CsA was injected daily. Four weeks after transplantation, gross and histomorphological assessments were conducted for graft necrosis, measuring the cross-sectional area of the allograft, determining the degree of epithelization, lymphocytic infiltration, and vascular regeneration. Results: The morphologic integrity of the trachea was retained completely in all cases. The cross-sectional areas were decreased significantly in group A (p=0.018) and B (p=0.045). The degree of epithelization was enhanced (p=0.012) and the lymphocytic infiltration was decreased (p=0.048) significantly in group D compared to group A. The degree of vascular regeneration did not differ significantly in any of the groups. There were no significant correlations among epithelization, lymphocytic infiltration, and vascular regeneration. Conclusion: The administration of MSCs with concurrent injections of CsA enhanced and promoted epithelization and prevented lymphocytic infiltration in tracheal allografts, allowing for better acceptance of the allograft.

Trans-differentiation Induction of Human-mesenchymal Stem Cells Derived from Different Tissue Origin and Evaluation of their Potential for Differentiation into Corneal Epithelial-like Cells

  • Moon, Sun-Woung;Lee, Hyeon-Jeong;Lee, Won-Jae;Ock, Sun-A;Lee, Sung-Lim
    • Journal of Embryo Transfer
    • /
    • 제33권2호
    • /
    • pp.85-97
    • /
    • 2018
  • The trans-differentiation potential of mesenchymal stem cells (MSCs) is employed, but there is little understanding of the cell source-dependent trans-differentiation potential of MSCs into corneal epithelial cells. In the present study, we induced trans-differentiation of MSCs derived from umbilical cord matrix (UCM-MSCs) and from dental tissue (D-MSCs), and we comparatively evaluated the in vitro trans-differentiation properties of both MSCs into corneal epithelial-like cells. Specific cell surface markers of MSC (CD44, CD73, CD90, and CD105) were detected in both UCM-MSCs and D-MSCs, but MHCII and CD119 were significantly lower (P < 0.05) in UCM-MSCs than in D-MSCs. In UCM-MSCs, not only expression levels of Oct3/4 and Nanog but also proliferation ability were significantly higher (P < 0.05) than in D-MSCs. In vitro differentiation abilities into adipocytes and osteocytes were confirmed for both MSCs. UCM-MSCs and D-MSCs were successfully trans-differentiated into corneal epithelial cells, and expression of lineage-specific markers (Cytokeratin-3, -8, and -12) were confirmed in both MSCs using immunofluorescence staining and qRT-PCR analysis. In particular, the differentiation capacity of UCM-MSCs into corneal epithelial cells was significantly higher (P < 0.05) than that of D-MSCs. In conclusion, UCM-MSCs have higher differentiation potential into corneal epithelial-like cells and have lower expression of CD119 and MHC class II than D-MSCs, which makes them a better source for the treatment of corneal opacity.