• Title/Summary/Keyword: mercury porosimetery

Search Result 2, Processing Time 0.014 seconds

Synthesis and Physico-Chemical Properties of Dicalcium Phosphate Dihydrate for Dental Abrasive (치아 연마용 인산일수소칼슘의 합성 및 물리화학적 성질)

  • 서성수;황성주;이기명;이계주
    • YAKHAK HOEJI
    • /
    • v.37 no.1
    • /
    • pp.66-75
    • /
    • 1993
  • Dental abrasive, dicalcium phosphate dehydrate (DCPD) was prepared and the several important factors affecting on the quality of toothpaste were investigated by means of set test, glycerine absorption, Coulter counter test, color difference, BET adsorption, mercury porosimetery, and rheogram comparing with two foreign DCPDs, MFO4 and Dentphos K. Sample DCPD was prepared by reaction between 85% H$_{3}$PO$_{4}$ and 15% milk of lime at $39^{\circ}C$ (pH6.5), and stabilized with TSPP and TMP. The physicochemical properties of Sample DCPD were obtained as follows: whiteness (98.99), average particle size (15.5 $\mu\textrm{m}$), pH (7.9), remainder particle weight (0.49w/w%), glycerine absorption value (64 ml), and set test (passed). N$_{2}$ adsorption curves (BET) of three kinds of DCPD showed non-porous type III isotherm. BET adsorption parameters of sample DCPD showed that surface area was 24.9 m$^{2}$/g, total pore volume 0.09 cm$^{3}$/g and average pore radius 72.0 $\AA$. The rheogram of the toothpaste containing each DCPD showed bulged plastic flow with yield vlaue and thixotropic behavior. These results meet standard requirements as abrasive standard, and suggested that synthesized sample DCPD could be used a dental abrasive such as a high quality grade in practice as foreign DCPDs.

  • PDF

A Study on Preparation and Reactivity of Zinc-based Sorbents for H2S Removal (H2S제거를 위한 아연계 탈황제 제조 및 반응특성 연구)

  • Lee, Chang Min;Yoon, Yea Il;Kim, Sung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.183-189
    • /
    • 1999
  • Zinc-based sorbents for $H_2S$ removal were prepared. The reactivity of sorbents was investigated by the successive cycles of sulfidation-regeneration at $650^{\circ}C$ in a fixed bed reactor. The desulfurization sorbents were prepared with granulation method to produce a spherical pellet with good attrition resistance. The fresh and reacted sorbents were characterized by X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS) and the characteristics of sorbents on calcination conditons were analysed by Mercury Porosimetery and BET. The reactivity of sorbents decreased as the number of sulfidation-regeneration cycle increased. It is due to the zinc loss and the increase of the diffusion resistance by sintering, cracking and spalling of sorbents at the high temperature.

  • PDF