• Title/Summary/Keyword: mercaptan

Search Result 152, Processing Time 0.023 seconds

Effects of Dietary Probiotic Complex on Growth Performance, Blood Immunological Parameters and Fecal Malodor Gas Emission in Growing Pigs (복합 생균제 첨가가 육성돈의 생산성, 면역관련 혈액학적 지표 및 분내 유해가스 발생에 미치는 영향)

  • Jang, H.D.;Kim, H.J.;Cho, J.H.;Chen, Y.G.;Yoo, J.S.;Kim, I.H.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.501-508
    • /
    • 2007
  • This study was conducted to evaluate effect of probiotic complex(Lactobacillus acidophilus, Bacillus subtilis and Aspergillus oryzae) on growth performance, blood immunological parameters and fecal malodor gas emissions in growing pigs. Forty-eight pigs[(Landrace × Yorkshire) × Duroc, 25.31±1.29kg average initial body weight] were used in 35d growth trial. Dietary treatments included CON(basal diet), PC1(basal diet + 0.1% probiotic complex) and PC2(basal diet + 0.2% probiotic complex). From d 0 to 20, ADFI was significantly increased in PC1 and PC2 compared to CON(Linear effect, P=0.013). From d 21 to 35, ADFI was increased in PC1 compared to CON(Quadratic effect, P=0.024). For the whole period, ADFI was increased PC2 and PC1 compared to CON(Linear effect, P=0.009, Quadratic effect, P=0.004). For the whole period, ADG was increased in PC1 compared to CON(Quadratic effect, P=0.017). G/F was not affected by treatments. Dry matter digestibility in PC2 was higher than PC1 and CON(Linear effect, P=0.001). Nitrogen digestibility was significantly higher in PC2 and PC1 than CON(Linear effect, P=0.005). In blood immunological parameters, Total protein, IgG, red blood cell(RBC) and white blood cell(WBC) were increased in PC2 compared to PC1 and CON(Linear effect, P<0.001, Quadratic effect, P<0.001). In fecal malodor gas emission, ammonia and acetic acid were significantly reduced in PC2 compared to CON(Linear effect, P<0.02). Hydrogen sulfide was significantly reduced in PC2 compared to CON(Linear effect, P=0.0002, Quadratic effect, P=0.018). However, total mercaptans was not affected by treatments. Water content of feces was not significantly different among the treatments. In conclusion, 0.2 % probiotic complex improved ADFI, apparent dry matter and nitrogen digestibility, Total protein, IgG, RBC and WBC. Also, it decreased ammonia, acetic acid and hydrogen sulfide emissions in growing pigs.

A Study on Livestock Odor Reduction Using Water Washing System (수세탈취시스템을 이용한 축산악취저감에 관한 연구)

  • Jeon, Kyoung-Ho;Choi, Dong-Yoon;Song, Jun-Ik;Park, Kyu-Hyun;Kim, Jae-Hwan;Kwag, Jung-Hoon;Kang, Hee-Sul;Jeong, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • The odor problem in the livestock is increasing by 7% annually. Most importantly, the livestock odor problem in swinery accounts for the maximum ratio (54%). In this study, we reviewed the possibility of deodorizing swinery using an odor reduction device that can be used with the water washing system. First, the study confirmed that the solubility of odor gas, which was hydrogen sulfide, was very low regardless of the contact time with solvent, but the solubility of methyl mercaptan was found to increase along with the increase in time. The solubility of other odor gases, such as dimethyl sulfide, dimethyl disulfide and ammonia, was considerably high. Consequently, it is considered that if the odor reduction device for the water washing system deodorization is used in a swinery, the time during which the exhaust gas is in contact with usable water must be extended, or solvent quantity must be expanded. However, it is predicted that although hydrogen sulfide is easily generated in the anaerobic condition, it is difficult to expect high odor reduction efficiency because this gas has low solubility in water, especially in case it is used in the deodorization of the water washing system. The result of the solubility experiment using the bench-scale device practically manufactured represented the higher odor reduction ratio than expected. This result was possible because the removal efficiency of dust particles could be reached up to 93%. Therefore, it is judged that also the odor gas absorbed on dust particles could be removed by removal of dust. Consequently, it is expected that the higher order reduction ratio will be possible by structural improvement for increasing contact with water and odor gas.