• Title/Summary/Keyword: mequitazine

Search Result 3, Processing Time 0.021 seconds

Effect of Mequitazine on the Muscarinic Receptors (Mequitazine의 Muscarine수용체에 대한 작용)

  • 이신웅;장태수
    • Biomolecules & Therapeutics
    • /
    • v.3 no.3
    • /
    • pp.192-198
    • /
    • 1995
  • The affinity of mequitazine, a non-sedating antihistamine, for muscarinic receptors was evaluated in the guinea-pig ventricle and ileum by in vitro binding techniques and functional studies. In binding studies, [$^3$H]quinuclidinyl benzilate (QNB) identified a single class of muscarinic receptors with similar apparent $K_{D}$ value of about 100 pM in two tissues. Mequitazine inhibited [$^3$H]QNB binding to muscarinic receptors competitively. Analysis of the mequitazine inhibition curve of [$^3$H]QNB binding to ventricular microsome and ileal homogenate indicated the presence of a single homogeneous binding site with Ki value of 25 nM and 18 nM, respectively. In functional studies, mequitazine caused parallel rightward shifts of concentration-response curves for carbachol and histamine in the isolated guinea-pig ileum. The slope values obtained from Schild plot analysis for the antagonistic action of mequitazine on muscarinic and histamine $H_1$-receptors were not significantly different from unity. The p $A_2$values of mequitazine for muscarinic and histamine $H_1$-receptors were about 7.6 ( $K_{M}$= 25.1 nM) and 8.88 ( $K_{H}$= 1.32 nM), respectively. These results indicate that the muscarinic receptor blocking action of mequitazine is 15 times less potent than the $H_1$receptor blocking action, but high concentration of this drug may cause the peripheral muscarinic receptor blocking effect.t.t.t.

  • PDF

Determination of Mequitazine in Human Plasma by Gas-Chro-matography/Mass Spectrometry with Ion-Trap Detector and Its Pharmacokinetics after Oral Administration to Volunteers

  • Kwon Oh-Seung;Kim Hye-Jung;Pyo Heesoo;Chung Suk-Jae;Chung Youn Bok
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1190-1195
    • /
    • 2005
  • The objective of this study was to develop an assay for mequitazine (MQZ) for the study of the bioavailability of the drug in human subjects. Using one mL of human plasma, the pH of the sample was adjusted and MQZ in the aqueous phase extracted with hexane; the organic layer was then evaporated to dryness, reconstituted and an aliquot introduced to a gas chromatograph/mass spectrometer (GC/MS) system with ion-trap detector. Inter- and intra-day precision of the assay were less than 15.1 and $17.7{\%}$, respectively; Inter- and intra-day accuracy were less than 8.91 and $18.6{\%}$, respectively. The limit of quantification for the current assay was set at 1 ng/mL. To determine whether the current assay is applicable in a pharmacokinetic study for MQZ in human, oral formulation containing 10 mg MQZ was administered to healthy male subjects and blood samples collected. The current assay was able to quantify MQZ levels in most of the samples. The maximum concentration ($C_{max}$ was 8.5 ng/mL, which was obtained at 10.1 h, with mean half-life of approximately 45.5 h. Under the current sampling protocol, the ratio of $AUC_{t{\rightarrow}last}$ to $AUC_{t{\rightarrow}{\infty}}$ was $934{\%}$, indicating that the blood collection time of 216 h is reasonable for MQZ. Therefore, these observations indicate that an assay for MQZ in human plasma is developed by using GC/MS with ion-trap detector and validated for the study of pharmacokinetics of single oral dose of 10 mg MQZ, and that the current study design for the bioavailability study is adequate for the drug.

Interaction of Nonsedating Antihistamines with Cerebral Muscarinic Receptors (비수기성 항 Histamine제와 대뇌 Muscarine 수용체와의 상호작용)

  • 김영열;이정수;박인숙
    • YAKHAK HOEJI
    • /
    • v.43 no.5
    • /
    • pp.642-651
    • /
    • 1999
  • Nonsedating antihistamines do net cause sedation in therapeutic doses because these drugs hardly cross the blood-brain barrier. Since most of the peripheral side dffects of conventional antihistamines are related to their muscarinic receptor blocking action, the present study was performed to investigate whether nonsedating antihistamines interact with the muscarinic receptors and discriminate the muscarinic receptor subtypes in the rat cerebral microsomal fraction which containes both $M_1,{\;}M_2,{\;}M_3{\;}and{\;}M_4$ receptors. Five nonsedating antihistamines at high concentrations inhibited [$^3H$]QNB binding to the muscarinic receptor in a dose-dependent manner. The inhibition curves of these drugs except loratadine which showed positive cooperativity (nH=1.55) were steep (nH=1), indicating interaction with a single homogenous population of the binding sites. Astemizole, clemizole and mequitazine increased the $K_D$ value for [$^3H$]QNB without affecting the binding site concentrations, and this increase in the $K_D$ value resulted from the ability of these drugs to slow [$^3H$]QNB-receptor association. The Ki values of astemizole, clemizole and mequitazine for the inhibition for the inhibition of [$^3H$]QNB binding to muscarinic receptor were 0.58, 5.99 and $0.007{\;}{\mu}M$, respectively. However, loratadine and terfenadine inhibited noncompetitively [$^3H$]QNB binding with the normalized $IC_50$ value of about $2{\;}{\mu}M$. These results demonstrate that; 1) astemizole, clemizole and mequitazine interact directly with the muscarinic receptor at high concentrations; 2) muscarinic receptor blocking potency of these drugs varies widely among drugs; 3) these drugs do not discriminate between muscarinic receptor subtypes.

  • PDF