• Title/Summary/Keyword: membrane system

Search Result 2,409, Processing Time 0.029 seconds

Hydrophilic/Hydrophobic Dual Surface Coatings for Membrane Distillation Desalination (막증류 담수화를 위한 친수성/소수성 이중 표면 코팅)

  • Kim, Hye-Won;Lee, Seungheon;Jeong, Seongpil;Byun, Jeehye
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.3
    • /
    • pp.143-149
    • /
    • 2022
  • Membrane distillation (MD) has emerged as a sustainable desalination technology to solve the water and energy problems faced by the modern society. In particular, the surface wetting properties of the membrane have been recognized as a key parameter to determine the performance of the MD system. In this study, a novel surface modification technique was developed to induce a Janus-type hydrophilic/hydrophobic layer on the membrane surface. The hydrophilic layer was created on a porous PVDF membrane by vapor phase polymerization of the pyrrole monomer, forming a thin coating of polypyrrole on the membrane walls. A rigid polymeric coating layer was created without compromising the membrane porosity. The hydrophilic coating was then followed by the in-situ growth of siloxane nanoparticles, where the condensation of organosilane provided quick loading of hydrophobic layers on the membrane surface. The composite layers of dual coatings allowed systematic control of the surface wettability of porous membranes. By the virtue of the photothermal property of the hydrophilic polypyrrole layer, the desalination performance of the coated membrane was tested in a solar MD system. The wetting properties of the dual-layer were further evaluated in a direct-contact MD module, exploring the potential of the Janus membrane structure for effective and low-energy desalination.

Characterization of Frequency Separation in Polymer Membranes Mimicking a Human Auditory System (생체 청각기구를 모사한 폴리머 박막의 주파수 분리 특성 평가)

  • Song, Won-Joon;Bae, Sung-Jae;Kim, Wan-Doo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.516-521
    • /
    • 2011
  • The basilar membrane, an important functional part of the cochlea, is responsible for spectral separation of vibration signals transmitted from the stapes. In current study, scaled-up polymer membranes designed by mimicking the human basilar membrane were used for investigation of the frequency-separation characteristic. Displacement field formed on each polymer membrane was acquired by Laser Doppler scanning vibrometer and post-processed frequency-wise. The locations of the maximum displacement along the centerline were identified and collected for individual frequency range to produce the frequency-position map of individual polymer membrane. The influences of the membrane thickness and material properties on the variation of the frequency separability were discussed.

Development of micro check valve with polymer MEMS process for medical cerebrospinal fluid (CSF) shunt system (Polymer MEMS 공정을 이용한 의료용 미세 부품 성형 기술 개발)

  • Chang, J.K.;Park, C.Y.;Chung, S.;Kim, J.K.;Park, H.J.;Na, K.H.;Cho, N.S.;Han, D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1051-1054
    • /
    • 2000
  • We developed the micro CSF (celebrospinal fluid) shunt valve with surface and bulk micromachining technology in polymer MEMS. This micro CSF shunt valve was formed with four micro check valves to have a membrane connected to the anchor with the four bridges. The up-down movement of the membrane made the CSF on & off and the valve characteristic such as open pressure was controlled by the thickness and shape of the bridge and the membrane. The membrane, anchor and bridge layer were made of the $O_2$ RIE (reactive ion etching) patterned Parylene thin film to be about 5~10 microns in thickness on the silicon wafer. The dimension of the rectangular nozzle is 0.2*0.2 $\textrm{mm}^2$ and the membrane 0.45 mm in diameter. The bridge width is designed variously from 0.04 mm to 0.12 mm to control the valve characteristics. To protect the membrane and bridge in the CSF flow, we developed the packaging system for the CSF micro shunt valve with the deep RIE of the silicon wafer. Using this package, we can control the gap size between the membrane and the nozzle, and protect the bridge not to be broken in the flow. The total dimension of the assembled system is 2.5*2.5 $\textrm{mm}^2$ in square, 0.8 mm in height. We could precisely control the burst pressure and low rate of the valve varing the design parameters, and develop the whole CSF shunt system using this polymer MEMS fabricated CSF shunt valve.

  • PDF

An Experimental Study on the Optimization of Performance Parameter for Membrane Based Dehumidification and Air Conditioning System (분리막 제습공조 시스템의 성능변수 최적화를 위한 실험적 연구)

  • Jang, Jeachul;Kang, Eun-Chul;Jeong, Siyoung;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.75-80
    • /
    • 2016
  • There are three types of dehumidification systems : refrigeration dehumidification method, desiccant dehumidification method and hybrid dehumidification method. The first method involves removing moisture by condensation below the dew point, the second method involves absorption by a desiccant material and the last is an integration method. However, the refrigeration dehumidification system consumes too much power and controlling the humidity ratio is difficult. The desiccant dehumidification system uses less power but it has problems of environmental pollution. The hybrid dehumidification system has the disadvantage of a high initial cost. On the other hand, the energy consumption of the membrane based dehumidification system is lower than for the refrigeration dehumidification system. Also, it is an environmentally friendly technology. In this study, the performance parameters are evaluated for the dehumidification system using a hollow fiber membrane. Available area, duct side dry-bulb temperature, sweep gas flux (flow rate) and LMPD (Log Mean Pressure Difference) were used as the performance parameters.

Influence of Biaxial Loads on Impact Fracture of High-Strength Membrane Materials

  • Kumazawa, Hisashi;Susuki, Ippei;Hasegawa, Osamu;Kasano, Hideaki
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.395-413
    • /
    • 2009
  • Impact tests on high-strength membrane materials under biaxial loads were experimentally conducted in order to evaluate influence of biaxial loads on impact fracture of the membrane materials for the inflated applications. Cruciform specimens of the membrane materials were fabricated for applying biaxial loadings during the impact test. A steel ball was shot using a compressed nitrogen gas gun, and struck the membrane specimen. Impact tests on uniaxial strip specimens were also conducted to obtain the effect of specimen configuration and boundary condition on the impact fracture. The results of the measured crack length and the ultra-high speed photographs indicate the impact fracture properties of the membrane fabrics under biaxial loadings. Crack length due to the impact increased with applied tensile load, and the impact damages of the cruciform membrane materials under biaxial loadings were smaller than those of under uniaxial loadings. Impact fracture of the strip specimen was more severe than that of the cruciform specimen due to the difference of boundary conditions.

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

Performance and antifouling properties of PVDF/PVP and PSf membranes in MBR: A comparative study

  • Hazrati, Hossein;Karimi, Naser;Jafarzadeh, Yoones
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • In this study, the performance and antifouling properties of polysulfone (PSf) and polyvinylidene fluoride/polyvinylpyrrolidone (PVDF/PVP) membranes in a membrane bioreactor (MBR) were investigated. The membranes were prepared via phase inversion method, and then characterized by a set of analyses including contact angle, porosity and water flux and applied in a lab-scale MBR system. Soluble microbial product (SMP), extracellular polymeric substance (EPS), FTIR, gel permission chromatography (GPC) and particle size distribution (PSD) analyses were also carried out for MBR system. The results showed that the MBR with PSf membrane had higher hydrophobic organic compounds which resulted in formation of larger flocs in MBR. However, in this MBR had high compressibility coefficient of cake layer was higher (n=0.91) compared to MBR with PVDF/PVP membrane (n=0.8); hence, the fouling was more profound. GPC analysis revealed that compounds with molecular weight lower than 2 kDa are more formed on PSf membrane more than PVDF/PVP membrane. The results of FTIR analysis confirmed the presence of polysaccharide and protein compounds on the cake layer of both membranes which was in good agreement with EPS analysis. In addition, the results showed that their concentration was higher for the cake on PSf membrane.

Development of Measuring System of Membrane Stress for Membrane Structure (막구조물의 막장력 측정장치 개발에 관한 연구)

  • Jung, Hwan-Mok;Woo, Jae-Won;Cho, Byung-Wook;Lee, Seong-Yeun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.6
    • /
    • pp.67-74
    • /
    • 2008
  • This paper is concerned with the development of a measurement system using field measuring device which will give the membrane stress of the membrane structures. Up to this point, several techniques on measurement of membrane stresses has been proposed and some have been used in the fields, but accuracy of the measured stresses to be far from reliable one. Such situation has not been changed until recent days, we do not have the measurement device on which we can depend. On top of that, due to the different properties in cross directions for material of the membrane, the stress in the warp direction is different from that in the fill one.

  • PDF

Development of a Parametric Design System for Membrane Structures (연성 막구조의 파라메트릭 설계 시스템 개발)

  • Choi, Hyun-chul;Lee, Si Eun;Kim, Chee Kyeong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.29-36
    • /
    • 2016
  • The objective of this research is to development of a parametric design system for membrane structures. The parametric design platform for the spatial structures has been designed and implemented. Rhino3D is used as a 3D graphic kernel and Grasshopper is introduced as a parametric modeling engine. Modeling components such as structural members, loading conditions, and support conditions are developed for structural modeling of the spatial structures. The interface module with commercial structural analysis programs is implemented. An iterative generation algorithm for design alternatives is a part of the design platform. This paper also proposes a design approach for the parametric design of Spoke Wheel membrane structures. A parametric modeling component is designed and implemented. SOFiSTik is examined to interact with the design platform as the structural analysis module. The application of the developed interface is to design optimally Spoke Wheel Shaped Ductile Membrane Structure using parametric design. It is possible to obtain objective shape by controlling the parameter using a parametric modeling designed for shape finding of spoke wheel shaped ductile membrane structure. Recently, looking at the present Construction Trends, It has increased the demand of the large spatial structure. But, It requires a lot of time for Modeling design and the Structural analysis. Finally an optimization process for membrane structures is proposed.

Field Application of the Membrane System for the Recovery of VOCs from the Automobile Painting Process (도장공정 휘발성 유기화합물 회수를 위한 분리막 시스템의 현장 적용성 평가)

  • Choi, Whee Moon;Cho, Soon Haing;Kim, Soon Tae;Lee, Chung Seop;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • To recover of volatile organic compounds (VOCs) induced by painting process, we prepared separation system using hollow fiber membrane modules and evaluated the recovery performance of VOCs with different feed pressure and operating time. Concentration of volatile organic compound in permeate through the membrane increased with increasing operating time and pressure. Performance of the membrane for removing the VOCs when we applied 2-stage process showed better performance than that of single stage process.