• Title/Summary/Keyword: membrane surface modification

Search Result 130, Processing Time 0.024 seconds

Modification of polyethersulfone hollow fiber membrane with different polymeric additives

  • Arahman, Nasrul;Mulyati, Sri;Lubis, Mirna Rahmah;Razi, Fachrul;Takagi, Ryosuke;Matsuyama, Hideto
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.355-365
    • /
    • 2016
  • The improvement of fouling resistance of porous polymeric membrane is one of the most important targets in membrane preparation for water purification in many process like wastewater treatment. Membranes can be modified by various techniques, including the treatment of polymer material, blending of hydrophilic polymer into polymer solution, and post treatment of fabricated membrane. This research proposed the modifications of morphology and surface property of hydrophobic membrane by blending polyethersulfone (PES) with three polymeric additives, polyvinylpyrrolidone (PVP), Pluronic F127 (Plu), and Tetronic 1307 (Tet). PES hollow fiber membranes were fabricated via dry-wet spinning process by using a spinneret with inner and outer diameter of 0.7 and 1.0 mm, respectively. The morphology changes of PES blend membrane by those additives, as well as the change of performance in ultrafiltration module were comparatively observed. The surface structure of membranes was characterized by atomic force microscopy and Fourier transform infra red spectroscopy. The cross section morphology of PES blend hollow fiber membranes was investigated by scanning electron microscopy. The results showed that all polymeric additives blended in this system affected to improve the performances of PES membrane. The ultra-filtration experiment confirmed that PES-PVP membrane showed the best performance among the three membranes on the basis of filtration stability.

Gas transport properties of alumina composite membranes

  • Lee, Hong-Joo;Hiroyuki Yamauchi;Hiroyuki Suda;Kenji Haraya
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.128-131
    • /
    • 2004
  • The composite mesoporous ceramic membranes were prepared with ${\gamma}$-alumina and poly (2, 6-dimethyl-l, 4-pyphenylene oxide) (PPO) on the surface of the macroporous $\alpha$-alumina ceramic membranes and the permeation results were compared with those of the $\alpha$-alumina membrane for large-scale applications. In the results of the transport experiments, the ceramic membranes gave high gas permeances mainly due to Knudsen diffusion and surface diffusion as an additional mechanism. And, the polymer modification increased the permeances of the strongly adsorbing gas components. In this study the modifications of alumina ceramic membranes could increase the gas permeation performances especially for the strongly absorbing gas components.

  • PDF

Properties of Silicone-coated Fabric for Membrane Treated by Oxygen Low Temperature Plasma (산소 저온 플라즈마 처리에 의한 실리콘코팅 막 구조원단의 접착특성)

  • Park, Beob;Koo, Kang
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.195-200
    • /
    • 2011
  • Silicone-coated fabric were treated by oxygen low temperature plasma to improve the adhesion. The surface of silicone-coated fabric was modified with gaseous plasma of several discharge power in the presence of oxygen gas at 1Torr pressure. Oxygen plasma treatment introduces oxygen-containing functional groups and micro-pittings on the silicone-coated fabric surface. The treated fabrics with oxygen low temperature plasma were measured by contact angle analyzer and XPS(X-ray photoelectron spectroscopy), and interfacial adhesion was measured by T-peel test. The surface of fabric was investigated by SEM photographs. The chemical and physical modification of the surface wettabillity by plasma treatment can increase the adhesion.

Fabrication of Nonconductive Microscale Patterns on Ion Exchange Membrane by Laser Process (레이저 가공을 이용한 이온교환막 표면의 비전도성 마이크로 패턴의 제작)

  • Jinwoong Choi;Myeonghyeon Cho; Bumjoo Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.71-76
    • /
    • 2023
  • The electroconvection generated on the surface of an ion exchange membrane (IEM) is closely related to the electrical/chemical characteristics or topology of the IEM. In particular, when non-conductive regions are mixed on the surface of the IEM, it can have a great influence on the transfer of ions and the formation of nonlinear electroconvective vortices, so more theoretical and experimental studies are necessary. Here, we present a novel method for creating microscale non-conductive patterns on the IEM surface by laser ablation, and successfully visualize microscale vortices on the surface modified IEM. Microscale (~300 ㎛) patterns were fabricated by applying UV nanosecond laser processing to the non-conductive film, and were transferred to the surface of the IEM. In addition, UV nanosecond laser process parameters were investigated for obvious micro-pattern production, and operating conditions were optimized, such as minimizing the heat-affected zone. Through this study, we found that non-conductive patterns on the IEM surface could affect the generation and growth of electroconvective vortices. The experimental results provided in our study are expected to be a good reference for research related to the surface modification of IEMs, and are expected to be helpful for new engineering applications of electroconvective vortices using a non-conductive patterned IEM.

The Formation of Hybridized Porous Structure of Al Alloy by Alkali Surface Modification (알칼리 표면개질을 통한 다공성 알루미늄 합금의 하이브리드 기공구조 형성)

  • Seo, Young-Ik;Kim, Young-Moon;Lee, Young-Jung;Kim, Dae-Gun;Lee, Kyu-Hwan;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.22-27
    • /
    • 2009
  • To improve the filtration efficiency of porous materials used in filters, an extensive specific surface area is required to serve as a site for adsorption of impurities. In this paper, a method for creating a hybridized porous alloy using a powder metallurgical technique to build macropores in an Al-4 wt.% Cu alloy and subsequent surface modification for a microporous surface with a considerably increased specific surface area is suggested. The macropore structure was controlled by granulation, compacting pressure, and sintering; the micropore structure was obtained by a surface modification using a dilute NaOH solution. The specific surface area of surface-modified specimen increased about 10 times compare to as-sintered specimen that comprised of the macropore structure. Also, the surface-modified specimens showed a remarkable increase in micropores larger than 10 nm. Such a hybridized porous structure has potential for application in water and air purification filters, as well as membrane pre-treatment and catalysis.

Salt Repellent Behavior of Superhydrophobic Filtration Membrane

  • Sin, Bong-Su;Kim, Ho-Yeong;Lee, Gwang-Ryeol;Mun, Myeong-Un
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.236-236
    • /
    • 2012
  • In this study, we present the salt repellent behavior of superhydrophobic filtration membrane. Bio-fouling or mineral-fouling is the main factor of decreasing the performance of filtration membrane. The superhydrophobic modification of filtration membrane using PECVD (Plasma enhanced chemical vapor deposition) is introduced. The oxygen plasma was introduced for developing nano hairy structures and subsequent HMDSO (Hexamethyldisiloxane) coating was used for enhancing low surface energy. Saline water evaporation test was carried out to evaluate the difference of contamination of salt on superhydrophobic and moderately hydrophobic filtration membrane. EDS and EPMA were used for visualizing the residue of salt crystal.

  • PDF

UV-assisted surface modification of polyethersulfone (PES) membrane using TiO2 nanoparticles

  • Singh, Shruti;Karwa, Vinay;Marathe, K.V.
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.393-403
    • /
    • 2018
  • In this research commercial polyethersulfone (PES) membrane was modified using $TiO_2$ nanoparticles (P-25 Degussa) and further irradiated using UV light to overcome the hydrophobicity and fouling nature of the membrane. Further the membranes were characterized using SEM and FTIR. Contact angle measurements study confirmed the hydrophilic tendency of the modified membrane by decreasing the contact angle from $73^{\circ}$ to $20.28^{\circ}$. The modified membranes showed higher flux and better anti-fouling properties as compared to the unmodified counterparts. The optimum conditions were found to be 0.5 wt% $TiO_2$ loading with 60 min membrane immersion and 10 min UV light illumination. The effect of different pH conditions of feed was analysed. Real wastewater filtration experiments also indicated better performance of modified membranes as opposed to neat PES membranes.

Fluoroalkylation of the Surface of Hydrophilic Polyurethane Breathable Membrane (플루오르알킬화에 의한 친수성 폴리우레탄 필름 표면의 개질)

  • Hwang, Ji-Hyun;Oh, Kyoung-Suk;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.30-36
    • /
    • 2013
  • Swelling and subsequent deformation of membranes by water wetting are regarded as a prime drawback of hydrophilic polyurethane breathable film. Fluoroalkylated surface was prepared by reacting the film with hexamethylene diisocyanate(HDI) and 2-perfluorohexyl ethanol. IR spectra and XPS results showed that the fluoroalkyl group was successfully introduced to the film surface with hexamethylene linkage. Water contact angle was increased from $68.7^{\circ}$ up to $144.2^{\circ}$ with the degree of fluoroalkylation. Decrease in water-vapor permeability was minimized even for the film of highest fluoroalkylation.

Plasma Modification of Polymers

  • D´Agostino, Riccardo;Favia, Pietro;Fracassi, Francesco;Palumbo, Fabio
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.41-46
    • /
    • 2003
  • Plasma processes developed in our laboratory, of interest for biomaterials, barrier coatings for food packaging and corrosion protection, are briefly reviewed in this contribution. Particular attention is devoted to diagnostics aimed to rationalize plasma-surface interactions and to identify parameters and correlations to be utilized for process control.

  • PDF