• Title/Summary/Keyword: membrane properties

Search Result 1,538, Processing Time 0.045 seconds

A Study on Tensile Properties and Non-linear Behavior Analysis of Membrane for Stratospheric Airship Envelop (성층권 비행선용 막 재료의 인장 물성 측정 및 비선형 거동에 관한 연구)

  • Lee, Han-Geol;Roh, Jin-Ho;Lee, In;Kang, Wang-Gu;Yeom, Chan-Hong
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.103-106
    • /
    • 2005
  • The material properties of membrane for stratospheric airship is experimentally investigated. Mechanical tensile properties of the membrane material at room, high and low temperature are measured using instron with thermal chamber. Experimentaly, material non-linearity is observed at room and high temperature. In order to simulate material non-linearity caused by the uniaxial extension curve of a woven fabric, the nonlinear hyperelastic problem is considered with finite clement program of ABAQS. Numerical results are compared with experimental results.

  • PDF

Determination of the Actual Equilibrium Shape Finding and Optimum Cutting Pattern for Membrane Structures (막구조물의 준공평형형상해석 및 최적재단도 결정)

  • Lee, Jang-Bog;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.157-166
    • /
    • 2001
  • In general, the cutting pattern of the membrane structures is determined by dividing the complicated curved 3-D surface into several 2-D plane strip by using flattening technique. In this procedure, however, some discrepancies ore occurred between actual stresses of equilibrated state and designed uniform stresses because the material properties are not considered. These deviations can cause the critical structural problems, wrinkling or overstress, and thus a optimization process should be considered. In this paper, a new analytical method for determining an optimum cutting pattern considering material properties is presented. Here, iterative procedure is introduced to decrease the errors caused in numerical process. The optimization method proposed can diminish the deviations occurred by material properties and numerical errors, simultaneously. As a results, it is shown that the final stress distributions for the HP shell model are sufficiently near to design stress distributions, and it can be concluded that this method can be used to obtain the optimized cutting pattern of membrane structures.

  • PDF

Electrochemical Properties of Novel Metal Powder Electrodes for Polymer Electrolyte Membrane Electrolysis

  • Kim, Chang-Hee;Kang, Kyung-Soo;Park, Chu-Sik;Hwang, Gab-Jin;Bae, Ki-Kwang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1227-1228
    • /
    • 2006
  • The electrochemical properties of novel metal powders were investigated for the electrode materias of polymer electrolyte memebrane electrolysis. Two types of Pt black and $IrO_2$ powder electrodes were hot-pressed on the polymer electrolyte membrane to form membrane electrode assembly. The galvanodynamic polarization methode was used to characterize the electrochemical properties of both electrodes. From the experimental results, we concluded that the $IrO_2$ powder electrode exhibits better electrochemical performance than Pt black as cathode material for the electrolysis.

  • PDF

Enantiospecific separation in biphasic Membrane Reactors

  • Giorno, Lidietta
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.15-18
    • /
    • 1998
  • Membrane reactors are systems which combine a chemical reactor with a membrane separation process allowing to carry out simultaneously conversion and product separation. The catalyst can be immobilized on the membrane or simply compartmentalized in a reaction space by the membrane. Membrane reactors are today investigated to produce optically pure isomers and/or resolve racemic mixture of enantiomers. The interest towards these systems is due to the increasing demand of enantiomerically pure compounds to be used in the pharmaceutical, food, and agrochemical industries. In fact, enantiomers can have different biological activities, which often influence the efficacy or toxicity of the compound. On the basis of current literature there are basically two schemes on the use of membrane technology to produce enantiomers. In one case, the membrane itseft is intrinsically enantioselective: the membrane is the chiral system which selectively separates the wanted isomer on the basis of its conformation. In the other, a kinetic resolution using an enantiospecific biocatalyst is combined with a membrane separation process; the membrane separates the product from the substrate on the basis of their relative chemical properties (i.e. solubility). This kind of configuration is widely used to carry out kinetic resolutions of low water soluble substrams in biphasic membrane reactors [Giomo, 1995, 1997; Lopez, 1997]. These are systems where enzyme-loaded membranes promote reactions between two separate phases thanks to the properties of enzymes, such as lipases, to catalyse reactions at the org ic/aqueous interface; the two phases are maintained in contact and separated at the membrane level by operating at appropriate transmembrane pressure. A schematic representation of biphasic membrane reactor is shown in figure 1, while an example of enantiospecific reaction and product separation carried out with these systems is reported in figure 2.

  • PDF

Studies of the Membrane Formation Techniques and Its Correlation with Properties and Performance: A Review (막 형성 기술 및 특성과의 상관관계 연구 및 성능: 리뷰)

  • Kumari Nikita;Chivukula Narayana Murthy;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.110-126
    • /
    • 2023
  • In this review, the approaches, properties, and elements involved in the formation of polymeric membranes for various materials are discussed. The present research emphasizes the proficiency in several membrane formation processes such phase inversion, interfacial polymerization, stretching, track etching, and electrospinning. Additionally, the obstacles and applicability of various application manufacturing processes are addressed. Various polymeric membranes are reviewed with regard to significant surface properties such as surface roughness, surface tension, surface charge and surface functional group. Additional enhancements of popular membrane formation processes like phase inversion and interfacial polymerization are required to ensure advancements in membrane efficiency. Analysing the possibilities of modern manufacturing practices like track etching and electrospinning is also crucial.

제철소 폐수의 재활용을 위한 막분리 공정

  • Jeon, In-Su;Lee, Cheol
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.51-71
    • /
    • 1995
  • In case of industrial wastewater, it has various pollutants, high concentration and different physical, chemical properties each other in accordance with classofocation of wastewater. Therefore, after inquiring into the influence on the membrane of the dissolved pollutants, we should select the membrane of best efficient quality.

  • PDF

Interfacial properties of composite shotcrete containing sprayed waterproofing membrane

  • Park, Byungkwan;Lee, Chulho;Choi, Soon-Wook;Kang, Tae-Ho;Kim, Jintae;Choi, Myung-Sik;Jeon, Seokwon;Chang, Soo-Ho
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.385-397
    • /
    • 2018
  • This study evaluates the interfacial properties of composite specimens consisting of shotcrete and sprayed waterproofing membrane. Two different membrane prototypes were first produced and tested for their waterproofing ability. Then composite specimens were prepared and their interfacial properties assessed in direct shear and uniaxial compression tests. The direct shear test showed the peak shear strength and shear stiffness of the composites' interface decreased as the membrane layer became thicker. The shear stiffness, a key input parameter for numerical analysis, was estimated to be 0.32-1.74 GPa/m. Shear stress transfer at the interface between the shotcrete and membrane clearly emerged when measuring peak shear strengths (1-3 MPa) under given normal stress conditions of 0.3-1.5 MPa. The failure mechanism was predominantly shear failure at the interface in most composite specimens, and shear failure in the membranes. The uniaxial compression test yielded normal stiffness values for the composite specimens of 5-24 GPa/m. The composite specimens appeared to fail by the compressive force forming transverse tension cracks, mainly around the shotcrete surface perpendicular to the membrane layer. Even though the composite specimens had strength and stiffness values sufficient for shear stress transfer at the interfaces of the two shotcrete layers and the membrane, the sprayed waterproofing membrane should be as thin as possible whilst ensuring waterproofing so as to obtain higher strength and stiffness at the interface.

Preparation of Novel Polyvinylidene Fluoride (PVdF) Cation Exchange Heterogeneous Membrane and Their Adsorption Properties of Ion Selectivity (Polyvinylidene Fluoride (PVDF) 양이온 불균질막 제조 및 이온선택 흡착 특성)

  • Jeong, Min Ho;Ko, Dea Young;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.431-439
    • /
    • 2015
  • The study was evaluated and compared to commercial heterogeneous membrane in order to make cation exchange membrane set up the optimal preparing condition. The research findings show that ion exchange resin was added more than 40 wt% in order to show chemical properties of HPVDF higher than commercial heterogeneous membrane. But ion exchange resin was added less than 40 wt% in order to show mechanical properties of HPVDF higher than commercial heterogeneous membrane. According to conditions above, Electrical resistance was $1.83{\Omega}{\cdot}cm^{-1}$, water uptake was 79%, ion exchange capacity was 1.60 meq/g, and burst strength was 0.97 MPa. Also The TDS remove efficiency was measured by approximately 40%.