• Title/Summary/Keyword: membrane performance

Search Result 1,784, Processing Time 0.026 seconds

Mass and Heat Transfer Analysis of Membrane Humidifier with a Simple Lumped Mass Model (단순모델을 이용한 막 가습기 열 및 물질 전달 특성 해석)

  • Yu, Sang-Seok;Lee, Young-Duk;Bae, Ho-June;Hwang, Joon-Young;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.596-603
    • /
    • 2009
  • The performance of proton exchange membrane fuel cell (PEMFC) is seriously changed by the humidification condition which is intrinsic characteristics of the PEMFC. Typically, the humidification of fuel cell is carried out with internal or external humidifier. A membrane humidifier is applied to the external humidification of residential power generation fuel cell due to its convenience and high performance. In this study, a simple static model is constructed to understand the physical phenomena of the membrane humidifier in terms of geometric parameters and operating parameters. The model utilizes the concept of shell and tube heat exchanger but the model is also able to estimate the mass transport through the membrane. Model is constructed with FORTRAN under Matlab/$Simulink^{(R)}$ $\Box$environment to keep consistency with other components model which we already developed. Results shows that the humidity of wet gas and membrane thickness are critical parameters to improve the performance of the humidifier.

Fundamental parameters of nanoporous filtration membranes

  • Wei Li;Xiaoxu Huang;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.115-120
    • /
    • 2023
  • The design theory for nanoporous filtration membranes needs to be established. The present study shows that the performance and technical advancement of nanoporous filtration membranes are determined by the fundamental parameter I (in the unit Watt1/2) which is formulated as a function of the shear strength of the liquid-pore wall interface, the radius of the filtration pore, the membrane thickness, and the bulk dynamic viscosity of the flowing liquid. This parameter determines the critical power loss on a single filtration pore for initiating the wall slippage, which is important for the flux of the membrane. It also relates the membrane permeability to the power cost by the filtration pore. It is shown that for biological cellular membranes its values are on the scale 1.0E-8Watt1/2, for mono-layer graphene membranes its values are on the scale 1.0E-9Watt1/2, and for nanoporous membranes made of silica, silicon nitride or silicon carbonized its values are on the scale 1.0E-5Watt1/2. The scale of the value of this parameter directly measures the level of the performance of a nanoporous filtration membrane. The carbon nanotube membrane has the similar performance with biological cellular membranes, as it also has the value of I on the scale 1.0E-8Watt1/2.

Bioelectricity Generation Using a Crosslinked Poly(vinyl alcohol) (PVA) and Chitosan (CS) Ion Exchange Membrane in Microbial Fuel Cell

  • Badillo-Cardoso Jonathan;Minsoo Kim;Jung Rae Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.303-310
    • /
    • 2023
  • Microbial fuel cells (MFCs) are a bioelectrochemical system where electrochemically active bacteria convert organic waste into electricity. Poly(vinyl alcohol) (PVA) and chitosan (CS) are polymers that have been studied as potential alternative ion exchange membranes to Nafion for many electrochemical systems. This study examined the optimal mixing ratio of PVA and chitosan CS in a PVA:CS composite membrane for MFC applications. PVA:CS composite membranes with 1:1, 2:1, and 3:1 ratios were synthesized and tested. The water uptake and ion exchange capacity, Fourier transform infrared spectra, and scanning electron microscopy images were analyzed to determine the physicochemical properties of PVA:CS membranes. The prepared membranes were applied to the ion exchange membrane of the MFC system, and their effects on the electrochemical performance were evaluated. These results showed that the composite membrane with a 3:1 (PVA:CS) ratio showed comparable performance to the commercialized Nafion membrane and produced more electricity than the other synthesized membranes. The PVA:CS membrane implemented MFCs produced a maximum power density of 0.026 mW cm-2 from organic waste with stable performance. Therefore, it can be applied to a cost-effective MFC system.

Carbon Molecular Sieve Membranes Dispersed with Nano Particles

  • H.Suda;Ha, K.raya
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.183-186
    • /
    • 2004
  • Nano particles-containing CMS membranes were prepared by pyrolysis of polyimides dispersed uniformly with precursors and their gas separation performances were examined, to elucidate the permeation mechanism and to further improve the gas separation performance. Consequently, it was suggested that the separation performance could be controlled by doping nano-particles in the CMS membranes, and that optimization of various factors, such as the size, content, and dispersion state of the nano particles would contribute for further improvement of the gas separation performance.

  • PDF

Enhancement of Cycle Performance of Lithium Secondary Batteries Based on Nano-Composite Coated PVdF Membrane

  • Ryou, Myung-Hyun;Han, Young-Dal;Lee, Je-Nam;Lee, Dong-Jin;Park, Jung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.190-196
    • /
    • 2008
  • The multilayered membrane for lithium rechargeable batteries based on poly (vinylidene fluoride) (PVdF) is prepared with the coated layer containing nano-sized filler. The prepared membranes were subjected to studies of mechanical strength, morphology, interfacial stability, impedance spectroscopy, ionic conductivity, and cycle performance. The localized inorganic filler in the PVdF composite membrane rendered mechanical strength much reduced because of its low stretching ratio and it results in around half value of the mechanical strength of highly stretched PVdF membrane. In order to achieve high ionic conductivity and interfacial stability without sacrificing high mechanical strength, coating layer with nano-filler was newly introduced to PVdF membrane. The ionic conductivity of the coated membrane was 1.03 mS/cm, and the interface between the coating layer and PVdF membrane was stable when the membrane was immersed into liquid electrolyte. The discharge capacity of the cell based on nano-filler coated PVdF membrane was around 91% of the initial discharge capacity after 250 cycles, which is an improvement in cycle performance compared to the case for the non-coated PVdF membrane.

Theoretical Overview of Membrane Transport (막물질 이동의 이론적 고찰)

  • Park, Young
    • Membrane Journal
    • /
    • v.3 no.3
    • /
    • pp.94-107
    • /
    • 1993
  • Many researchers have discussed how membrane performance can be enhanced through an understanding of polymer science and engineering. The understandings of transport in porous membrane are used to achieve the isolation of certain components from mixtures. Particular emphasis is placed on the applicability of membrane separations for the isolation of macromolecules[1]. An awareness of membrane structure characteristics is required for the rational design of membranes for specific and/or new applications. This understanding rests on the knowledge of fields such as polymer thermodynamics[2], polymer adsorption [3, 4], diffusion in polymers[5, 6], reaction mechanism[7], and the dynamic behavior[8, 9] of polymer in porous membrane.

  • PDF

Multi- effect air gap membrane distillation process for pesticide wastewater treatment

  • Pangarkar, Bhausaheb L.;Deshmukh, Samir K.;Thorat, Prashant V.
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.529-541
    • /
    • 2017
  • A multi-effect air gap membrane distillation (ME-AGMD) module for pesticide wastewater treatment is studied with internal heat recovery, sensible heat of brine recovery, number of stages and the use of fresh feed as cooling water in a single module is implemented in this study. A flat sheet polytetrafluroethylene (PTFE) membrane was used in the 4-stage ME-AGMD module. The maximum value of permeate flux could reach $38.62L/m^2h$ at feed -coolant water temperature difference about $52^{\circ}C$. The performance parameter of the module like, specific energy consumption and gain output ratio (GOR) was investigated for the module with and without heat recovery. Also, the module performance was characterized with respect to the separation efficiency of several important water quality parameters. The removal efficiency of the module was found to be >98.8% irrespective water quality parameters. During the experiment the membrane fouling was caused due to the deposition of the salt/crystal on the membrane surface. The membrane fouling was controlled by membrane module washing cycle 9 h and also by acidification of the feed water (pH=4) using 0.1M HCl solution.

Performance Study of Membrane Capacitive Deionization (MCDI) Cell Constructed with Nafion and Aminated Polyphenylene Oxide (APPO) (Nafion과 Aminated Polyphenylene Oxide (APPO)를 적용한 막 축전식 탈염 공정의 성능 연구)

  • Kim, Ji Su;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.350-358
    • /
    • 2020
  • A membrane capacitive deionization (MCDI) cell is constructed by applying thin layer of a cation exchange membrane (Nafion) on cathode and an anion exchange membrane (aminated polyphenylene oxide, APPO) on anode. Compared to CDI cell without CEM and AEM coating, MCDI exhibits enhanced salt removal efficiency. When Nafion and APPO are used as CEM and AEM, optimized salt removal performance as high as 82.1% is observed when 1.2 V is applied for 3 min during absorption process and -1.0 V is applied for 1 min during desorption.

Sound Absorption and Thermal Insulation Characteristics of Membrane Used for Sound Field Control (음장제어용 막재료의 음향 및 단열특성)

  • Jeong, Jeong-Ho;Kim, Jeong-Uk;Jeong, Jae-Gun;Cho, Byung-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.103-114
    • /
    • 2012
  • Nowadays membrane material is widely used for large indoor spaces and long spaces such as traditional market. Thermal insulation and sound field control performance is considered as a main properties for design of such buildings. In this paper sound absorption and thermal insulation properties of membrane material was investigated. Firstly, normal incidence sound absorption coefficient of 10 kinds of glass wool textiles showed that sound absorption coefficient was increased in proportion of thickness and surface density of textile. Sound absorption coefficient of 4 kinds of sound absorptive inner membrane with outer membrane was tested in the reverberation chamber. Sound absorption coefficient of mid frequency range was about 0.4 ~ 0.6. Also, sound absorption coefficient was changed by the air space behind the membrane material. Secondly, sound field control performance was investigated using mock-up space. By the installation of sound absorption membrane material, reverberation time was decreased and speech intelligibility was increased. Finally, thermal resistance and room temperature in two kinds of mock-up rooms were tested, simultaneously. Results of thermal properties showed thermal insulation properties ware increased by adding inner membrane material underneath the outer membrane.

Organotemplate-free synthesis of ZSM-5 membrane for pervaporation dehydration of isopropanol

  • Li, Jiajia;Li, Liangqing;Yang, Jianhua;Lu, Jinming;Wang, Jinqu
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.353-360
    • /
    • 2019
  • ZSM-5 membrane was prepared on tubular macroporous ${\alpha}$-alumina support using a different synthesis route. The effects of organic template agent and Si/Al ratio of the synthesis gel on morphology, structure, and separation performance of the ZSM-5 membrane used for dehydration of isopropanol were investigated. High water perm-selectivity ZSM-5 membrane with a thickness of about $3.0{\mu}m$ and a low Si/Al ratio of 10.1 was successfully prepared from organotemplate-free synthesis gel with a molar composition of $SiO_2$ : $0.050Al_2O_3$ : $0.21Na_2O$ : NaF : $51.6H_2O$ at $175^{\circ}C$ for 24 h. The ZSM-5 membrane exhibited high pervaporation performance with a flux of $3.92kg/(m^2{\cdot}h)$ and corresponding separation factor of higher than 10,000 for dehydration of 90 wt.% isopropanol/water mixture at $75^{\circ}C$.