• Title/Summary/Keyword: membrane effects

Search Result 2,316, Processing Time 0.033 seconds

Far-infrared rays enhance mitochondrial biogenesis and GLUT3 expression under low glucose conditions in rat skeletal muscle cells

  • Seo, Yelim;Kim, Young-Won;Lee, Donghee;Kim, Donghyeon;Kim, Kyoungseo;Kim, Taewoo;Baek, Changyeob;Lee, Yerim;Lee, Junhyeok;Lee, Hosung;Jang, Geonwoo;Jeong, Wonyeong;Choi, Junho;Hwang, Doegeun;Suh, Jung Soo;Kim, Sun-Woo;Kim, Hyoung Kyu;Han, Jin;Bang, Hyoweon;Kim, Jung-Ha;Zhou, Tong;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.167-175
    • /
    • 2021
  • Far-infrared rays (FIR) are known to have various effects on atoms and molecular structures within cells owing to their radiation and vibration frequencies. The present study examined the effects of FIR on gene expression related to glucose transport through microarray analysis in rat skeletal muscle cells, as well as on mitochondrial biogenesis, at high and low glucose conditions. FIR were emitted from a bio-active material coated fabric (BMCF). L6 cells were treated with 30% BMCF for 24 h in medium containing 25 or 5.5 mM glucose, and changes in the expression of glucose transporter genes were determined. The expression of GLUT3 (Slc2a3) increased 2.0-fold (p < 0.05) under 5.5 mM glucose and 30% BMCF. In addition, mitochondrial oxygen consumption and membrane potential (ΔΨm) increased 1.5- and 3.4-fold (p < 0.05 and p < 0.001), respectively, but no significant change in expression of Pgc-1a, a regulator of mitochondrial biogenesis, was observed in 24 h. To analyze the relationship between GLUT3 expression and mitochondrial biogenesis under FIR, GLUT3 was down-modulated by siRNA for 72 h. As a result, the ΔΨm of the GLUT3 siRNA-treated cells increased 3.0-fold (p < 0.001), whereas that of the control group increased 4.6-fold (p < 0.001). Moreover, Pgc-1a expression increased upon 30% BMCF treatment for 72 h; an effect that was more pronounced in the presence of GLUT3. These results suggest that FIR may hold therapeutic potential for improving glucose metabolism and mitochondrial function in metabolic diseases associated with insufficient glucose supply, such as type 2 diabetes.

Centella asiatica and Asiaticoside Regulate H2O2-induced Cellular Inflammation via Mitochondrial Respiration and the TLR4 Pathway (병풀(Centella asiatica) 및 아시아티코사이드는 미토콘드리아 호흡 및 TLR4 경로를 통해 H2O2 유도 세포염증 조절)

  • Ji, Juree;Nam, Young sun;Kang, Sang Mo
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.389-399
    • /
    • 2021
  • This study determined the effects of Centella asiatica leaf on H2O2 induced cell cycle arrest, mitochondrial activity, and proinflammatory cytokine production in human dermal fibroblast (HDF) cells. We used an 80% methanol extract of C. asiatica, its ethyl acetate fraction, and asiaticoside, the major constituent of C. asiatica. The C. asiatica extract, its ethyl acetate fraction, and asiaticoside attenuated G1 cell cycle-arrest and the apoptotic effect caused by H2O2-induced oxidative stress. The cells treated with C. asiatica extract, its ethyl acetate fraction, and asiaticoside secreted lower levels of TNF-α and IL-6. The antioxidant effect of asiaticoside was higher than that of C. asiatica extract and its ethyl acetate fraction. Treatment with C. asiatica extract, its ethyl acetate fraction, and asiaticoside also increased the mitochondrial membrane potential and restored normal mitochondrial morphology. Following H2O2 stress induction, cells treated with C. asiatica extract, its ethyl acetate fraction, and asiaticoside showed increased mitochondrial oxygen consumption rates and decreases in the TLR4-MyD88-TRAF6-p65 pathway activity. These findings suggest that C. asiatica extract, its ethyl acetate fraction, and asiaticoside have antioxidant and anti-inflammatory effects, as well as the ability to control the mitochondrial activities of HDF cells.

Inhibitory effects of artemether on thrombus formation via regulation of cyclic nucleotides in collagen-induced platelets (콜라겐-유도의 혈소판에서 사이클릭 뉴클레오티드의 조절을 통한 Artemether의 항혈전 효과)

  • Chang-Eun Park;Dong-Ha Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.239-245
    • /
    • 2022
  • Although normal activation of platelets is important in the process of hemostasis, excessive or abnormal activation of platelets can lead to cardiovascular diseases. Therefore, the discovery of novel substances capable of regulating or inhibiting platelet activation may be helpful in the prevention and treatment of cardiovascular diseases. Artemether is a derivative of artemisinin, known as an active ingredient of Artemisia annua, which has been reported to be effective in treating malaria, and is known to function through antioxidant and metabolic enzyme inhibition. However, the role of artemether in platelet activation and aggregation and the mechanism of action of artemether in collagen-induced human platelets are not known until now. This study investigated the effects of artemether on platelet activation and thrombus formation induced by collagen. As a result, cAMP level was significantly increased by artemether, and VASP and IP3R, substrates of cAMP-dependent kinase, were phosphorylated. IP3R phosphorylation by Artemether inhibited Ca2+ recruitment into the cytoplasm, and phosphorylated VASP inhibited fibrinogen binding by inactivating αIIb/β3 located on the platelet membrane. Consequently, artemether inhibited thrombin-induced fibrin clot formation. Therefore, we propose that artemether can act as an effective prophylactic and therapeutic agent for cardiovascular diseases caused by excessive platelet activation and thrombus formation.

Effects of Dietary Caloric Restriction and Exercise on GLUT 2 in Liver and GLUT-4 and VAMP-2 in Muscle Tissue of Diabetic Rats

  • Jeong, Ilgyu;Oh, Myungjin;Jang, Moonnyeo;Koh, Yunsuk;Biggerstaff, Kyle D.;Nichols, David;Ben-Ezra, Vic
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • It has been shown that both caloric restriction and exercise, enhances glucose uptake through translocation of GLUT-4 protein. It remains unclear how exercise and caloric restriction affect the changes in VAMP (vesicle-associated membrane protein) in skeletal muscle and GLUT-2 in liver. This study investigated the effects of exercise training and caloric restriction on the expressions of glucose transport relating proteins in muscle and liver tissues in diabetic rats. Forty male Sprague-Dawley rats (250±10 g; 8 week in age) were assigned equally to four different groups; control (C), exercise only (E), dietary restriction only (D) and dietary restriction and exercise (DE). Daily food consumption was monitored to establish baseline intake. Both C and E groups consumed baseline food intake while D and DE groups were provided with only 60% of baseline total food intake. Forty-eight hours after intraperitoneal injection of STZ (50 mg/kg), diabetes was confirmed (8-hr fasting blood glucose levels ≥300 mg/dl). Rats in the E and DE groups exercised on a motorized treadmill for 30 min/d, 5 days/week for 4 weeks (5 min running at 3 m/min, 0% grade; 8 m/min for the next 5min, and then 15 m/min for 20 min). Rats were sacrificed 48 hrs after the last bout of exercise. Soleus muscle and liver were extracted to analyze for GLUT-4, VAMP-2, and GLUT-2, respectively. All variables were analyzed using the Western Blotting technique. All values were expressed as optical volume measured by optical density. A Two-way ANOVA was used to examine the difference between groups and applied Duncan's test for post-hoc. No significant differences in GLUT-2 expression were found among groups. However, E (280133±13228 arbitrary units{AU}) and DE (268833±14424 AU) groups showed significantly higher (p<.001) levels of GLUT-4 as compared with C (34461±2099 AU) and D groups (27847±703 AU). VAMP-2 protein expression increased (p<.001) in E (184137±7803 AU) and DE (189800±10856 AU) groups as compared to C (74201±8296AU) and D (72967±863 AU) groups. These results suggest that either exercise with or without caloric restriction increases the up-regulation of GLUT-4 and VAMP-2 in skeletal muscle of diabetic rats. However, GLUT-2 protein in liver was not affected by either exercise or exercise with caloric restriction.

Hepato-Protective Activities of Jasminum officinale L. var. grandiflorum Aqueous Extract via Activation of AMPK in HepG2 Cells (AMPK 활성화를 통한 소형화(素馨花) (Jasminum officinale L. var. grandiflorum) 열수 추출물의 HepG2 간세포 보호 활성)

  • Sang Mi Park;Dae Hwa Jung;Byung Gu Min;Kyung Hwan Jegal;Sung Hui Byun;Jae Kwang Kim;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.231-243
    • /
    • 2023
  • Objectives : Jasminum officinale L. var. grandiflorum is used as a traditional or folk remedy in China to treat arthritis, hepatitis, duodenitis, conjunctivitis, gastritis, and diarrhea. In this study, we aimed to study the hepatocyte protective activity and molecular mechanism of Jasminum officinale L. var. grandiflorum aqueous extract (JGW) using HepG2 hepatocyte cell lines. Methods : HepG2 cells were pretreated with diverse concentrations of JGW, and then the cells were exposed to tert-butyl hydroperoxide (tBHP) for inducing oxidative stress. Hydrogen peroxide (H2O2) production, glutathione (GSH) concentration, mitochondrial membrane potential (MMP) and cell viability were measured to investigate hepato-protective effects of JGW. Phosphorylation of AMP-activated protein kinases (AMPK), acetyl coenzyme A carboxylase (ACC) and effects of compound C on cell viability were examined to observe the role of AMPK on JGW-mediated cytoprotection. Results : Pretreatment with JGW (10-300 ㎍/mL) significantly suppressed cytotoxicity induced by tBHP in a concentration dependent manner and reduced the expression of cleaved PARP and cleaved caspase-3 proteins related to apoptosis in HepG2 cells. In addition, pretreatment with JGW significantly prevented the increase in H2O2 production, GSH depletion, and lower MMP induced by tBHP. Treatment with JGW (30 minutes of incubation and concentrations of 100 and 300 ㎍/mL) increased the phosphorylation of AMPK and ACC and treatment with compound C, a chemical inhibitor of AMPK, inhibited the cytoprotective effect of JGW. Conclusions : Our results demonstrated that JGW may protect hepatocytes from oxidative stress via activation of AMPK.

SKT + EKE (2:1) protects oxidative stress induced-liver damage (산화적 스트레스에 대한 생간건비탕가음양곽(生肝健脾湯加淫羊藿) (2:1)의 간보호효과)

  • Sang Mi Park;Dae Hwa Jung;Hyo Jeong Jin;Ye Lim Kim;Kyung-soon Kim;Min Hwangbo;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.32 no.1
    • /
    • pp.63-82
    • /
    • 2024
  • Objective : Saengkankunbi-tang (SKT) is used as a traditional Korean herbal formula for treatment of liver diseases. We investigated the hepatoprotective effects of SKT plus Epimedium koreanum Nakai (EKE) against arachidonic acid (AA) + iron-mediated cytotoxicity in HepG2 cells and carbon tetrachloride (CCl4)-mediated acute liver damage in mice. Methods : The cyto-protective effects of SKT + EKE were determined by MTT assay, western blot and fluorescence activated cell sorting analysis. In mice, blood biochemistry and western blot were assessed in CCl4-induced acute hepatic damage. The animal groups included vehicle-treated control, CCl4, SKT (200 mg/kg/day), EKE (100 mg/kg/day), SKT (200 mg/kg/day) + EKE (100 mg/kg/day) and silymarin (200 mg/kg/day). Results : In HepG2 cells, pretreatment with SKT + EKE significantly suppressed cytotoxicity induced by AA + iron and reduced the expression of proteins related to apoptosis. In addition, pretreatment with SKT + EKE significantly prevented the increase in H2O2 production, GSH depletion, and lower mitochondrial membrane potential induced by AA + iron. In CCl4-induced liver damage mice, the administration of SKT + EKE prevented the liver damage by inhibition of hepatocyte damage and expression of apoptosis proteins in liver. More importantly, in vitro and in vivo assay, SKT + EKE showed significant effect compare with SKT alone or EKE alone in all parameters. Conclusions : These results indicated that SKT + EKE could protect against oxidative stress-induced liver damage, and SKT + EKE is more effective than SKT alone or EKE alone.

Characteristics of Organic Material Removal and Electricity Generation in Continuously Operated Microbial Fuel Cell (연속류식 미생물연료전지의 유기물 제거 및 전기 발생 특성)

  • Kim, Jeong-Gu;Jeong, Yeon-Koo;Park, Song-In
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.57-65
    • /
    • 2010
  • Two types of microbial fuel cells(MFC) were continuously operated using synthetic wastewater. One was conventional two-chambered MFC using proton exchange membrane(PEM-MFC), the other was upflow type membraneless MFC(ML-MFC). Graphite felt was used as a anode in PEM-MFC. In membraneless MFC, two MFCs were operated using porous RVC(reticulated vitreous carbon) as a anode. Graphite felt was used as a cathode in all experiments. In experiment of PEM-MFC, the COD removal rate based on the surface area of anode was about $3.0g/m^2{\cdot}d$ regardless of organic loading rate. And the coulombic efficiency amounted to 22.4~23.4%. The acetic acid used as a fuel was transferred through PEM from the anodic chamber to cathodic chamber. The COD removal rate in ML-MFC were $9.3{\sim}10.1g/m^2{\cdot}d$, which indicated the characteristics of anode had no significant effects on COD removal. Coulombic efficiency were 3.6~3.7 % in both cases of ML-MFC experiments, which were relatively small. It was also observed that the microbial growth in cathodic chamber had an adverse effects on the electricity generation in membraneless MFC.

A Study on the Post-Receptor Mechanism of Adenosine Receptor on Norepinephrine Release in the Rat Hippocampus (흰쥐 해마에서 Norepinephrine 유리에 미치는 Adenosine Receptor의 Post-Receptor 기전에 관한 연구)

  • Choi, Bong-Kyu;Kim, Do-Kyung;Yang, Kyung-Moo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • Since it has been reported that the depolarization-induced norepinephrine (NE) release is inhibited by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus, a large body of experimental data on the post-receptor mechanism of this process has been accumulated. But, the post-receptor mechanism of presynaptic $A_1-adenosine$ receptor on the NE release has not been clearly elucidated yet. Therefore, it was attempted to clarify the post-receptor mechanisms of the $A_1-adenosine$ receptor-mediated control of NE release in this study. Slices from rat hippocampus were equilibrated with $^3H-norepinephrine$ and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 $Vcm^{-1}$, 2 ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Adenosine, in concentrations ranging from $1{\sim}30{\mu}M$, decreased the NE release in a dose-dependent manner, without affecting the basal rate of release. The adenosine effects were significantly inhibited by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, $2{\mu}M$), a selective $A_1-receptor$ antagonist. The responses to N-ethylmaleimide (NEM, 10 & $30{\mu}M$), a SH-alkylating agent of G-protein, were characterized by increments of the evoked NE-release and the basal release, and the adenosine effects were completely abolished by NEM pretreatment. $4{\beta}-Phorbol$ 12,13-dibutyrate (PDB, $1{\mu}M$), a specific protein kinase C (PKC) activator, increased the evoked NE release, whereas polymyxin B sulfate (PMB,0.1 mg), a PKC inhibitor, decreased the release, and the adenosine effects were inhibited by these agents. Nifedipine $(1{\mu}M)$, a $Ca^{2+}-channel$ blocker of dihydropyridine analogue, did not affect the adenosine effect. Tetraethylammonium (TEA, 3 mM) increased the evoked NE release, and inhibited the adenosine effects, but glibenclamide, a ATP dependent $K^+-channel$ blocker, did not. Finally, 8-bromo cyclic AMP (100 & $300{\mu}M$), a membrane-permeable analogue of cAMP, did not alter the NE release, but adenosine effects were inhibited by pretreatment with 8br-cAMP. These results suggest that the decrement of the evoked NE-release by $A_1-adenosine$ receptor is mediated by the C-protein, which is coupled to protein kinase C, adenylate cyclase system and TEA sensitive $K^+-channel$, and that nifedipine-sensitive $Ca^{2+}-channel$ and glibenclamide-sensitive $K^+-channel$ are not involved in this process.

  • PDF

Effects of insulin and IGF on growth and functional differentiation in primary cultured rabbit kidney proximal tubule cells - Effects of IGF-I on Na+ uptake - (초대배양된 토끼 신장 근위세뇨관세포의 성장과 기능분화에 대한 insulin과 IGF의 효과 - Na+ uptake에 대한 IGF-I의 효과 -)

  • Han, Ho-jae;Park, Kwon-moo;Lee, Jang-hern;Yang, IL-suk
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.783-794
    • /
    • 1996
  • It has been suggested that ion transport systems are intimately involved in mediating the effects of growth regulatory factors on the growth of a number of different types of animal cells in vivo. The functional importance of the apical membrane $Na^+/H^+$ antiporter in the renal proximal tubule is evidenced by estimates that this transporter mediates the reabsorption of approximately one third of the filtered load of sodium and the bulk of the secretion of hydrogen ions. This study was designed to investigate the pathway utilized by IGF-I in regulating sodium transport in primary cultured renal proximal tubule cells. Results were as follows : 1. $Na^+$ was observed to accumulate in the primary cells as a function of time. Raising the concentration of extracellular NaCl induced an decrease in $Na^+$ uptake compared with control cells in a dose dependent manner. The rate of $Na^+$ uptake into the primary cells was about two times higher in the absence of NaCl($40.11{\pm}1.76pmole\;Na^+/mg\;protein/min$) than in the presence of 140mM NaCl($17.82{\pm}0.94pmole\;Na^+/mg\;protein/min$) at the 30 minute uptake. 2. $Na^+$ uptake was inhibited by IAA($1{\times}10^{-4}M$) or valinomycin($5{\times}10^{-6}M$) treatment($50.51{\pm}4.04$ and $57.65{\pm}2.27$ of that of control, respectively). $Na^+$ uptake by the primary proximal tubule cells was significantly increased by ouabain($5{\times}10^{-5}M$) treatment($140.23{\pm}3.37%$ of that of control). When actinomycin D($1{\times}10^{-7}M$) or cycloheximide($4{\times}10^{-5}M$) was applied, $Na^+$ uptake was decreased to $90.21{\pm}2.39%$ or $89.64{\pm}3.69%$ of control in IGF-I($1{\times}10^{-5}M$) treated cells, respectively. 3. Extracellular cAMP decreased $Na^+$ uptake in a dose-dependent manner($10^{-8}-10^{-4}M$). IBMX($5{\times}10^{-5}M$) also inhibited $Na^+$ uptake. Treatment of cells with pertussis toxin(50pg/ml) or cholera toxin($1{\mu}g/ml$) inhibited $Na^+$ uptake. Extracellular PMA decreased $Na^+$ uptake in a dose-dependent manner(1-100ng/ml). 100 ng/ml PMA concentration significantly inhibited $Na^+$ uptake in IGF-I treated cells. However, staurosporine($1{\times}10^{-7}M$) had no effect on $Na^+$ uptake. When PMA and staurosporine were added together, the inhibition of $Na^+$ uptake was not observed. In conclusion, sodium uptake in primary cultured rabbit renal proximal tubule cells was dependent on membrane potentials and intracellular energy levels. IGF-I stimulates sodium uptake through mechanisms that involve some degree of de novo protein and/or RNA synthesis, and cAMP and/or PKC pathway mediating the action mechanisms of IGF-I.

  • PDF

Antioxidative Activity and Component Analysis of Phellinus linteus Extracts (상황버섯 추출물의 항산화 및 성분분석)

  • Kim, A-Reum;Kim, Jung-Eun;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.4
    • /
    • pp.309-318
    • /
    • 2011
  • In this study, the antioxidative effect, antibacterial, inhibitory effects on tyrosinase, inhibitory effects on elastase and component analysis of Phellinus linteus (P. linteus) extracts were investigated. The ethyl acetate fraction of P. linteus extracts ($2.94\;{\mu}g/mL$) showed the highest free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity ($FSC_{50}$). Reactive oxygen species (ROS) scavenging activity ($OSC_{50}$) of P. linteus extracts on ROS generated in $Fe^{3+}$-EDTA/$H_2O_2$ system was investigated using the luminol-dependent chemiluminescence assay. The ethyl acetate fraction ($0.0072\;{\mu}g/mL$) showed the most prominent ROS scavenging activity. The protective effects of extract/fractions of P. linteus extracts on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The P. linteus extracts showed cellular membrane protective effects in a concentration dependent manner ($5{\sim}50\;{\mu}g/mL$). The inhibitory effect ($IC_{50}$) on tyrosinase of P. linteus extract was the highest at 50 % ethanol extract ($6.34\;{\mu}g/mL$), and the inhibitory effect ($IC_{50}$) on elastase of P. linteus was the highest at ethyl acetate fraction ($14.08\;{\mu}g/mL$). TLC, HPLC chromatogram and LC/ESI-MS of the ethyl acetate fraction obtained from P. linteus extracts were identified interfungin A (PL RPT-1a). These results indicate that extract/fractions of P. linteus can function as antioxidants in biological systems, particularly skin exposed to UV radiation by scavenging ROS, and protect cellular membranes against ROS. Extract/fractions of P. linteus can be applicable to new cosmeceuticals for antioxidant, antiaging, antiwrinkle and whitening.