• 제목/요약/키워드: membrane effects

검색결과 2,300건 처리시간 0.024초

Fenugreek seed polyphenols inhibit RBC membrane Na+/K+-ATPase activity

  • Anuradha, Carani V.;Kaviarasan, Subramanian;Vijayalakshmi, Kodali
    • Advances in Traditional Medicine
    • /
    • 제3권3호
    • /
    • pp.129-132
    • /
    • 2003
  • The hypoglycemic and hypolipidaemic effects of fenugreek seeds (Trigonella foenum graecum) are well established. Owing to the wide spread use of the seeds by healthy individuals and by diabetic patients we wanted to test whether the seeds can affect biological systems such as membrane transport function. In the present study fenugreek seed polyphenols were extracted and their effect on erythrocyte membrane-bound sodium-potassium adenosine triphosphatase $(Na^+/K^+-ATPase)$ activity was studied in vitro. Fenugreek seed polyphenols inhibited $Na^+/K^+-ATPase$ in erythrocyte membrane of diabetic and normal subjects. Maximum inhibition was observed at $100\;{\mu}l$ of extract containing 0.75 mM gallic acid equivalents. The uncoupling of membrane ATPases in vitro suggest that polyphenols from fenugreek seeds may possess a positive inotropic effect.

Hot-Pressing Effects on Polymer Electrolyte Membrane Investigated by 2H NMR Spectroscopy

  • Lee, Sang Man;Han, Oc Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.510-514
    • /
    • 2013
  • The structural change of Nafion polymer electrolyte membrane (PEM) induced by hot-pressing, which is one of the representative procedures for preparing membrane-electrode-assembly for low temperature fuel cells, was investigated by $^2H$ nuclear magnetic resonance (NMR) spectroscopy. The hydrophilic channels were asymmetrically flattened and more aligned in the membrane plane than along the hot-pressing direction. The average O-$^2H$ director of $^2H_2O$ in polymer electrolyte membrane was employed to extract the structural information from the $^2H$ NMR peak splitting data. The dependence of $^2H$ NMR data on water contents was systematically analyzed for the first time. The approach presented here can be used to understand the chemicals' behavior in nano-spaces, especially those reshaping and functioning interactively with the chemicals in the wet and/or mixed state.

Pontoon and Membrane Breakwater

  • 기성태
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.185-191
    • /
    • 2003
  • A numerical study on the hydrodynamic properties of a floating flexible breakwater consisting of triple vertical porous membrane structures attached to a floating rigid pontoon restrained by moorings is carried out in the context of two-dimensional linear wave-flexible body interaction theory. The tensions in the triple membranes are achieved by hanging a clump weight from its lower ends. The clump weight is also restrained properly by moorings. The dynamic behavior of the breakwater was described through an appropriate Green function, and the fluid multi-domains are incorporated into the boundary integral equation. Numerical results are presented which illustrate the effects of the various wave and structural parameters on the efficiency of the breakwater as a barrier to wave action. It is found that the wave reflection and transmission properties of the structures depends strongly on the membrane length taking major fraction of water column, the magnitude of tensions on membrane achieving by the clump weight, proper mooring types and stiffness, the permeability on the membrane dissipating wave energy.

  • PDF

Application of response surface methodology in pes/speek blend NF membrane for dyeing solution treatment

  • Lau, W.J.;Ismail, A.F.
    • Membrane and Water Treatment
    • /
    • 제1권1호
    • /
    • pp.49-60
    • /
    • 2010
  • In this study, response surface methodology (RSM) was performed in NF membrane process to evaluate the separation efficiency of membrane in the removal of salt and reactive dye by varying different variables such as pressure, temperature, pH, dye concentration and salt concentration. The significant level of both the main effects and the interaction were observed by analysis of variance (ANOVA) approach. Based on the statistical analysis, the results have provided valuable information on the relationship between these variables and the performances of membrane. The rejection of salt was found to be greatly influenced by pressure, pH and salt concentration whereas the dye rejection was relatively constant in between 96.22 and 99.43% regardless of the changes in the variables. The water flux on the other hand was found to be affected by the pressure and salt concentration. It is also found that the model predictions were in good agreement with the experimental data, indicating the validity of these models in predicting membrane performances prior to the real filtration process.

니켈 지지체를 이용한 바나듐기 분리막의 수소 투과특성 (Effects of Nickel Supports on Hydrogen Permeability of Vanadium based Membrane)

  • 조경원;최재하;정석;김경일;홍태환;안중우
    • 한국수소및신에너지학회논문집
    • /
    • 제24권3호
    • /
    • pp.200-205
    • /
    • 2013
  • The separation of hydrogen depends on porosity, diffusivity and solubility in permeation membrane. Dense membrane is always showing a solution diffusion mechanism but porous membrane is not showing. Therefore, porous membrane has a good hydrogen flux due to pore is carried out transferred media. This mechanism is named as the Knudsen diffusion. Hydrogen molecules or hydrogen atoms are diffused along pore that is a mean free path. In this study, complex layer hydrogen permeation membrane was fabricated by hot press process. And then, it was evaluated and calculated to relationship between hydrogen permeability and membrane porosity.

Preparation of PVDF/PEI double-layer composite hollow fiber membranes for enhancing tensile strength of PVDF membranes

  • Yuan, Jun-Gui;Shi, Bao-Li;Ji, Ling-Yun
    • Membrane and Water Treatment
    • /
    • 제5권2호
    • /
    • pp.109-122
    • /
    • 2014
  • Polyvinylidene fluoride (PVDF) hollow fiber membrane is widely used for water treatment. However, the weak mechanical strength of PVDF limits its application. To enhance its tensile strength, a double-layer composite hollow fiber membrane, with PVDF and polyetherimide as the external and inner layers, respectively, was successfully prepared through phase inversion technique. The effects of additive content, air gap distance, N,N-dimethyl-acetamide content in the inner core liquid, and the temperature of external coagulation bath on the membrane structure, permeation flux, rejection, tensile strength, and porosity were determined. Experimental results showed that the optimum preparation conditions for the double-layer composite hollow fiber membrane were as follows: PEG-400 and PEG-600, 5 wt%; air gap distance, 10 cm; inner core liquid and the external coagulation bath should be water; and temperature of the external coagulation bath, 40 C. A single layer PVDF hollow fiber membrane (without PEI layer) was also prepared under optimum conditions. The double-layer composite membrane remarkably improved the tensile strength compared with the single-layer PVDF hollow fiber membrane. The permeation flux, rejection, and porosity were also slightly enhanced. High-tensile strength hollow fiber PVDF ultrafiltration membrane can be fabricated using the proposed technique.

Pervaporation을 이용한 휘발성 유기성분 회수에 관한 연구 (The Study on the Recovery of Volatile Organic Components by Pervaporation)

  • 김희진;송영석;민병렬
    • 멤브레인
    • /
    • 제9권1호
    • /
    • pp.51-62
    • /
    • 1999
  • 본 연구는 투과증발법을 이용한 미량의 휘발성 유기용제 회수에 관한 것으로서 polydimethylsiloxane (PDMS) 균질막을 이용하여 혼합물의 농도, 막의 두께에 따른 투과 특성을 살펴보고, 이에 따라 용해-확산 모델을 이용하여 해석하였다. PDMS 균질막을 통한 MEK , 톨루엔 혼합수용액의 투과실험에서 각 물질의 선택도는 공급액의 농도와 다른 물질의 농도에 상관없이 일정한 값을 나타내었으며, 투과유량도 공급액 농도와 선형의 비례관계을 보였다. 따라서 본 연구에서 각 물질간의 간섭효과는 나타나지 않았다. 균질막의 두께를 변화시키며 행한 투과 실험에서 막 두께에 다른 선택도의 변화는 관철되지 않았다. 이에 따라서 용해-확산모델을 이용하여 각 물질의 PDMS막에 대한 투과계수를 구하였다. 막의 기능성과 실용성을 향상시키기 위한 복합막을 제조하여 행한 투과 실험을 한 결과 PEG 처리한 부직포위에 PDMS를 도포한 막이 선택도나 용질투과유량면에서 가장 우수한 성능을 보였다.

  • PDF

Resonance and Response of the Submerged Dual Buoy/Porous-Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.22-32
    • /
    • 2001
  • The numerical investigation of obliquely incident wave interactions with fully submerged dual buoy/porous-membrane floating breakwaters placed in parallel with spacing is studied based on linear potential theory and Darcy's law. The numerical solutions are obtained by using a discrete-membrane dynamic model and second-kind modified Bessel function distribution over the entire boundaries of fluid regions. First, numerical solutions for an idealized dual submerged system without buoys are obtained. Second, a more practical dual submerged system with membrane tension provided by buoys at its tops is investigated by the multi-domain boundary element method particularly devised for dual buoy/porous-membrane problems with gaps. The velocity potentials of wave motion are coupled with porous-membrane deformation, and solved simultaneously since the boundary condition on porous-membrane is not known in advance. The effects of varying permeability on membranes and wave characteristics are discussed for the optimum design parameters of systems previously studied. The inclusion of permeability on membrane eliminates the resonances that aggravate the breakwater performance. The system is highly efficient when waves generated by the buoys and membranes were mutually canceled and its energy at resonance frequency dissipates through fine pores on membranes.

  • PDF

Energy-saving potential of cross-flow membrane emulsification by ceramic tube membrane with inserted cross-section reducers

  • Albert, K.;Vatai, Gy.;Giorno, L.;Koris, A.
    • Membrane and Water Treatment
    • /
    • 제7권3호
    • /
    • pp.175-191
    • /
    • 2016
  • In this work, oil-in-water emulsions (O/W) were prepared successfully by membrane emulsification with $0.5{\mu}m$ pore size membrane. Sunflower oil was emulsified in aqueous Tween80 solution with a simple crossflow apparatus equipped with ceramic tube membrane. In order to increase the shear-stress near the membrane wall, a helical-shaped reducer was installed within the lumen side of the tube membrane. This method allows the reduction of continuous phase flow and the increase of dispersed phase flux, for cost effective production. Results were compared with the conventional cross-flow membrane emulsification method. Monodisperse O/W emulsions were obtained using tubular membrane with droplet size in the range $3.3-4.6{\mu}m$ corresponded to the membrane pore diameter of $0.5{\mu}m$. The final aim of this study is to obtain O/W emulsions by simple membrane emulsification method without reducer and compare the results obtained by membrane equipped with helix shaped reducer. To indicate the results statistical methods, $3^p$ type full factorial experimental designs were evaluated, using software called STATISTICA. For prediction of the flux, droplet size and PDI a mathematical model was set up which can describe well the dependent variables in the studied range, namely the run of the flux and the mean droplet diameter and the effects of operating parameters. The results suggested that polynomial model is adequate for representation of selected responses.

Evaluation of the efficiency of cleaning method in direct contact membrane distillation of digested livestock wastewater

  • Kim, Sewoon;Park, Ki Young;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • 제8권2호
    • /
    • pp.113-123
    • /
    • 2017
  • This study investigated effects of physical and chemical cleaning methods on the initial flux recovery of fouled membrane in membrane distillation process. A laboratory scale direct contact membrane distillation (DCMD) experiment was performed to treat digested livestock wastewater with 3.89 mg/L suspended solids, 874.7 mg/L COD, 543.7 mg/L nitrogen, 15.6 mg/L total phosphorus, and pH of 8.6. A hydrophobic PVDF membrane with an average pore size of $0.22{\mu}m$ and a porosity of 75 % was installed inside a direct contact type membrane distillation module. The temperature difference between feed and permeate side was maintained at $40^{\circ}C$ with the feed and permeate stream velocity of 0.18 m/s. The results showed that the permeate flux decreased from $22.1L{\cdot}m^{-2}{\cdot}hr^{-1}$ to $19.0L{\cdot}m^{-2}{\cdot}hr^{-1}$ after 75 hours of distillation. The fouled membrane was cleaned first by physical flushing and consecutively by chemicals with NaOCl and citric acid. After the physical cleaning the flux was recovered to 92 % as compared with the initial clean water flux of the virgin membrane. Then 94 % of the flux was recovered after cleaning by 2,000 ppm NaOCl for 90 minutes and finally 97 % of flux recovered after 3 % citric acid for 90 minutes. SEM-EDS and FT-IR analysis results presented that the foulants on the membrane surface were removed effectively after each cleaning step. The contact angle measurement showed that the hydrophobicity of the membrane surface was also restored gradually after each cleaning step to reach nearly the same hydrophobicity level as the virgin membrane.